
Skin Cancer Diagnosis Using Self-Supervised Learning

Maria Rita Ribeiro da Fonseca Verdelho

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisors: Dra. Ana Catarina Fidalgo Barata
Prof. Jorge dos Santos Salvador Marques

Examination Committee

Chairperson: Prof. João Fernando Cardoso Silva Sequeira
Supervisor: Dra. Ana Catarina Fidalgo Barata

Member of the Committee: Prof. Pedro Manuel Quintas Aguiar

November 2021



Declaration
I declare that this document is an original work of my own authorship and

that it fulfills all the requirements of the Code of Conduct and Good Practices
of the Universidade de Lisboa.



Acknowledgments

I would like to thank my parents, my two sisters and my brother for their support, encouragement and

friendship throughout my academic career. I could not have come this far without all your help. I would

like to especially thank my parents for giving me the opportunity and means to have the best academic

education.

To my supervisors, Dra. Catarina Barata and Professor Jorge Marques, whose guidance, assistance

and critical feedback were essential during this project execution. Thank you very much for all the help

that allowed me to feel motivated and always supported.

A special thanks to Dra. Catarina Barata for all her constructive feedback, partnership and availability

to help me write the article, that was based on this thesis, and was submitted for publication in the ISBI

2022 conference.

Lastly, I would like to thank my friends and remainder family for all their support during these 5

academic years.

i





Abstract

Convolutional Neural networks (CNNs) are the standard approach for image classification. However,

they require a large amount of data and corresponding annotations. Collecting medical data is a difficult

task, due to privacy restrictions. Moreover, it is even harder to obtain the clinical labels, since these must

be provided by specialists. Self-supervised learning (SSL) has emerged as a possibility to overcome

this issue, since it uses non-annotated data to pre-train the CNN. Recently SSL has been applied in

the context of skin cancer. However, the results were not conclusive since a qualitative analysis was

missing. Moreover, a proper analysis of the impact of different SSL approaches is still missing. In this

master’s thesis it will be investigated two SSL approaches: Rotation and SimCLR. The results highlight

the benefits of applying self-supervised learning to the classification of dermoscopy images. Additionally,

it was possible to demonstrate that these approaches learn different and complementary features, which

is also a novelty of this thesis. As SSL is known to benefit from using more unlabeled data, it was also

studied the impact of adding more data to the SSL pre-trained models (using 50% more data). It was

possible to observe that depending on the level of difficulty of the task, the more it benefits from using

more data. Therefore, the SimCLR task benefited more from the increase of data. The fusion of both

techniques also showed to benefit with the use of more data, this was expected since the SimCLR also

improved.
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Resumo

Redes neurais (CNNs) são a abordagem padrão para a classificação de imagens. No entanto, estes

modelos exigem uma grande quantidade de dados anotados. O processo de obter dados clinicos é uma

tarefa muito difı́cil, devido às restrições de privacidade que existem nos dias de hoje. Além disso, obter

dados com as respetivas anotações médicas é ainda mais difı́cil de se conseguir, uma vez que estes

diagnósticos têm que ser fornecidas por especialistas. A aprendizagem auto-supervisionada (SSL)

surgiu como uma possibilidade de contornar este problema, na medida em que utiliza dados não an-

otados para pré-treinar as CNNs. Recentemente, o SSL foi aplicado no contexto do cancro da pele.

No entanto, os resultados não foram conclusivos, sendo que lhes faltou uma análise qualitativa. As-

sim sendo, falta ainda executar um estudo onde se analisa o impacto das diferentes técnicas do SSL.

Nesta dissertação de mestrado, foram investigadas duas abordagens de SSL: Rotation e SimCLR.

Os resultados obtidos destacam os benefı́cios da aplicação da aprendizagem auto-supervisionada na

classificação de imagens dermatoscópicas. Foi, também, demonstrado que essas abordagens apren-

dem recursos diferentes e complementares. O SSL é conhecido por melhorar o seu desempenho com o

uso de mais dados. Consequentemente, optou-se por se executar uma experiência onde se adicionou

mais 50% dos dados. Foi possı́vel observar, que dependendo do nı́vel de dificuldade da tarefa, mais

esta beneficia do uso de mais dados. Assim sendo, o modelo pre-treinado com o SimCLR beneficiou

mais com o aumento de dados. A fusão das duas técnicas também mostrou benefı́cios, o que era

espectável, uma vez que o SimCLR também melhorou.

Palavras Chave

Lesões de Pele, Redes Neuronais, Aprendizagem Auto-Supervisionada, Imagens Dermoscópicas
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1.1 Motivation

Skin cancer is one of the most common types of cancer worldwide [18]. The main known cause is

excessive exposure to the sun’s UV rays, which over time, penetrates and damages the skin. Therefore,

malignant lesions are likely to appear in areas that are more exposed to radiation such as limbs, back,

face and neck [18].

Each year there are approximately 13.000 new cases of skin cancer in Portugal [18] and in the U.S.

more than 9.500 people are diagnosed every day [19]. More people are diagnosed each year with skin

cancer, in the U.S., than all other cancers combined. In the past decade, the number of melanoma cases

diagnosed annually has increased by 47% and about 86% of these cases can be attributed to exposure

to ultraviolet radiation [19]. In non-melanoma cancer about 90% of skin cancer is associated with UV

radiation and about 5.400 people worldwide die every month due to this disease [19].

Skin cancer is also one of the most treatable forms of cancer when detected in an early stage. Also,

late detection can have a significant impact in mortality rates [20]. Therefore, there is a need to develop

a convenient and precise method to perform earlier diagnose and detect skin cancer lesions. However,

this detection is not easy since the different lesions have many shapes, textures and colors that can

be visually similar among melanoma and non-melanoma lesions [20]. Over the past decade, automatic

methods based on deep learning have been developed to assist human experts and accelerate the

process of cancer diagnoses.

There is a continuous need to improve the performance of the developed deep learning methods,

to achieve a faithful classification of the different skin lesions. However, obtaining satisfactory results

requires a huge amount of data, which is a very difficult task. Not only due to privacy and law restrictions

but also because obtaining clinical labeled data requires the knowledge of a specialist. This problem is

addressed in the section 1.3 and is one of the main focuses of this thesis.

1.2 Skin Lesions Analysis

Dermoscopy is a non-invasive diagnostic tool that dermatologists use to evaluate skin lesions regarding

colors and micro-structures that are invisible to the naked eye. The main principle of this tool is to

place fluid on the lesion, because oily skin allows light to pass through it and to reach the deeper

dermis and consequently visualize subsurface skin structures [21]. After placing the fluid on the skin,

a dermatoscope is used to magnify the lesion and the doctor is able to inspect it in more detail [21].

However, even though the lesion is magnified it is still a very hard task, even for experienced doctors, to

diagnose the different lesions [21].

Dermatologists divide skin lesions into two main classifications, non-melanocytic and melanocytic

groups, after this differentiation, they classify the lesions in benign or malignant classes. This hierarchy
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is described in figure 1.1.

Figure 1.1: Skin lesions taxonomy of International Skin Image Collaboration (ISIC) 2019 dataset (Dermoscopy
images extracted from [1] [2] [3]).

1.3 Problem Formulation

1.3.1 Problem Statement

Despite the great advances in developing methods to assist human experts and accelerate the process

of cancer diagnoses, the existing methodologies are still far from allowing a robust performance of

classifiers based on neural networks.

Deep neural networks are the most used methods for image classification. However, when applied to

medical image analysis, the use of such techniques becomes challenging. These methods require huge

amounts of data and corresponding labels, in order to achieve satisfactory and generalizable results [22].

Collecting clinical data is a difficult task, due to privacy and law restrictions. However, it is even harder

to obtain clinical labeled data, since the labels must be provided by specialists. Therefore, the process

of creating labels is very expensive and requires too much time, which doctors do not have, to get

an acceptable number of annotated images [23] [24]. On the other hand, collecting unlabeled data is

easier [25]. Although there has been an attempt of solving this issue by developing semi-automatic

software tools that generate labels, these techniques resulted in having a non-significant impact on

reducing the time spent for annotating these datasets [26].

In order to reduce the use of an excessive number of labeled images, current deep learning methods

use Transfer Learning (TL). This method consists first in training a model for a task in a large data base

(e.g., ImageNet1) and then the model is ’recycled’ for a new target task, for example, a more specific

image classification task, such as skin cancer diagnosis, or a different task (e.g., object detection) [28].

These pre-trained models on ImageNet usually have deeper architectures than what is needed in medi-

cal image analysis [29]. The distribution intensity from the natural images (images from ImageNet [27]),

1ImageNet [27] is labeled image database with more than 100,000 images.
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is also very different in comparison to medical images [25]. Therefore, when trying to apply the previous

knowledge obtained using natural images to the medical images, there are neurons, of the network, that

remain loyal to the dataset, which can have difficulties in generalizing to the other data [29]. In fact,

when using the unrelated dataset there is no need to have medical knowledge to label the images, but it

is still required to use a significant amount of labels in this initialization step [23]. Therefore, the following

question arises: Is it possible to learn weights for the medical image domain using fewer annotations

and only images from the same domain?

1.3.2 What is Self-Supervised learning (SSL)?

A technique has been used to avoid the need to use huge amounts of labeled data in order to achieve

satisfactory and generalizable results [22]. SSL was created to optimize the data usage, since this

technique does not require the use of labels in the pre-training phase [24]. Its fundamental idea was

inspired by how humans learn different tasks. First, it is essential to have a clear representation of the

world, and only then a task can be learned. Babies, before learning how to walk, start to experience

gravity, as well as start to understand the need to avoid objects and observe how other humans walk [30].

Therefore, during their life, humans learn tasks by observing their surroundings [30].

SSL, in contrast to TL, does not require the use of annotations by learning images representations

from its pixels [31]. This is advantageous in the medical image domain, not only because there are

a higher number of non-annotated datasets than annotated [23], but also because TL uses natural

images (e.g., from ImageNet) which have significantly different properties from medical ones. Further

details about the differences between TL and SSL are presented in section 2.3.1.

In fact, by applying SSL the neural network learns features that well represent the data and this

knowledge can be very advantageous when applied to different tasks. So the question that now arises

is: How does SSL work?

Figure 1.2: The main idea of SSL (extracted from [4])
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Figure 1.2 summarizes the concept of SSL. The first step of SSL consists in assigning a simple task,

known as pretext task (selected according to the intended goal) for the Convolutional Neural Network

(CNN) to solve. There are multiple pretext tasks, which will be discussed in section 2.3.4. SSL is

focused on the knowledge of the learned features rather than the final performance of the pretext task.

In this first step, the network can learn a new task by learning from the unlabeled data. During this

process, visual features from the unlabeled images are extracted and the CNN is trained to minimize

the objective functions. The corresponding learned weights will, in the second step, be transferred to

the target task. This consists of ’recycling’ the first convolutional layers that contain the learned weights

and applying that network to the target task by adjusting its final layers according to the intended goal.

This final step consists of training a labeled dataset (with fewer annotated data) on the target task using

the knowledge obtained by the pretext task. The final task is also known as target task and consists of

image classification, segmentation, object detection, action recognition or others [25].

1.4 Thesis Objective and Contributions

SSL is gaining popularity as it is achieving promising results when comparing with TL [32]. Therefore,

this thesis’s main goal is to apply SSL techniques to the skin cancer diagnosis in order to better exploit

the unlabeled images and improve the performance of classifiers based on neural networks. By doing

so it is expected to prevent the use of huge amounts of annotated data. This thesis will combine TL with

SSL in an attempt to filter the generalization problem that occurs when using TL. TL uses natural images

that have a different domain to the skin lesion ones. Therefore the network resulted from applying TL,

will have neurons that remain loyal to the natural images. By applying SSL it is expected to correct these

neurons and obtain a network that generalizes better to the skin lesion images. In this thesis, it was

performed a systematic assessment of six TL pipelines (two with supervised learning as the baseline

and four self-supervised contenders) in 5 different partitions of the ISIC 2019 dataset. To better exploit

the results it was executed a quantitative and qualitative analysis of each model. This is believed to be

the first work that provides a qualitative analysis of the features learned by the SSL strategies.

From this thesis, an article has been submitted for publication in IEEE International Symposium on

Biomedical Imaging (ISBI) 2 2022 conference. The article is in Appendix B.

2ISBI is a scientific conference dedicated to mathematical, algorithmic, and computational aspects of biological and biomedical
imaging, across all scales of observation. It fosters knowledge transfer among different imaging communities and contributes to
an integrative approach to biomedical imaging.
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1.5 Organization of the Document

This report is organized as follows: chapter 1 provides an introduction to the skin cancer detection, which

involves a huge amount of data and an introduction to the SSL; chapter 2 addresses a brief description

of CNNs, followed by a description of the existent state of the art, addressing the supervised and self-

supervised methods used for detecting skin cancer and contains also a set of techniques used for self-

supervised models; Chapter 3 explains this thesis approach with a more detailed explanation of the used

methodologies; Chapter 4 starts with a dataset description, followed by a description of the evaluation

metrics, the computational environment and the experimental results and discussion of the different

initialization techniques developed during this thesis; Finally, chapter 5, contains the conclusions and

possible future work.
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This chapter contains a brief explanation of the background of deep learning. First, starts with

a general description of CNNs. Secondly, is followed by an explanation of the supervised learning

technique, which is currently the most common technique used in skin cancer diagnoses, and thirdly the

differences between SSL and TL are also stated. This chapter also contains the previous works in skin

lesions diagnosis and ends with a description of SSL techniques and their characteristics.

2.1 CNNs

As mentioned in chapter 1 one of the most popular deep learning techniques are the CNNs. These

networks have many different applications from image recognition to image classification or object de-

tection among others [22]. As the name indicates, CNNs have architectures that were inspired by the

human brain neurons.

CNNs receive images as input and assign different importance values, given by learnable weights

and biases, to multiple objects in the image. These parameters allow the network to distinguish different

images [33]. By applying different filters to the image, the network is capable of capturing the temporal

and spatial dependencies within an image [33].

2.1.1 Basic Concepts

CNN receives images as inputs and submits them to a series of convolutional layers with filters, also

known as kernels, followed by a non-linear activation function, in order to extract features from the

images. The output of each layer is known as the feature map, which consists of an image different from

the original. The feature maps will be submitted to a pooling layer that allows the CNN to reduce the

dimension of each image. This process is repeated as many times as needed. The first convolutional

layer extracts low-level features from the input image, e.g. edges and color, among others and the other

convolutional layers allow the system to learn high-level features, which aim to a better understanding of

the different images [33].

Finally, a Fully-Connected Layer (FCL) is applied to convert the feature maps into a single array.

This helps to reduce the computational complexity required to process the data [33]. The set of FCLs

is known as softmax classifier, which performs the intended multi-class classification by assigning a

probability of each class label over all the classes [34]. Figure 2.1 presents a typical CNN architecture.

The structure of the CNN involves many hyper-parameters (variables that influence the structure of

the network) that are directly related to the network efficiency [34].
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Figure 2.1: CNN architecture (extract from [5])

2.1.2 Training the model

The training phase of the CNN has the aim of optimizing the model’s weights, to allow the network to

better map the input to the correct predicted class [33]. A loss function is used to improve the quality

of these output predictions by comparing the predicted output to the true label. Many different loss

functions have different objectives.

The training phase can be seen as an optimization problem, where the minimum of the loss function

is being searched. The network parameters are optimized through the gradient descent method, which

indicates the right direction for the next iteration, in order to achieve the minimum of the loss function.

There are two phases when training the network. The forward phase, where the input goes through

the network and the backward phase, where the gradients are back propagated and the weights are

updated [33]. The latter phase is where the gradient of the loss function is calculated.

The weights initialization is a hyper-parameter of the network. The choice of this initialization is

typically done, in supervised learning, by training the network from scratch or by using TL with pre-trained

models [34]. Section 2.2 contains a more detailed description of supervised learning. By computing the

forward phase an output is obtained and a loss is computed. The back propagation phase initiates and

the gradient of the obtained loss function is computed. To reduce the loss function value the weights are

updated. However, as a new model is being trained from scratch there is a need to use huge amounts

of data.

2.1.3 ResNet Architecture

All the experiments carried out in this thesis use the ResNet-50 architecture. Thus, a brief overview

of this network will be provided. The work presented in [6] introduces the concept of a residual neural

network that aims to facilitate the training of deep neural networks. In the past, it was proven that with the

9



increase in the depth, the accuracy of the model tends to saturate and, then, degrades rapidly. In other

words, by adding more layers into a previously trained network there is a decrease in the accuracy of

the model. To avoid this problem, instead of staking layers directly, this paper proposes a novel solution

that consists of replacing the traditional convolution blocks with residual connections. Figure 2.2 shows

the pipeline of the residual blocks. These residual connections can be seen as ’shortcuts’ that can be

directly used once the input and the output have the same length.

Figure 2.2: Pipeline of a Residual block (extracted from [6]).

As ResNet has proved to be a less complex network and nevertheless it still manages to obtain good

results this is why it will be used during this thesis work.

2.2 Supervised Learning

Over the last three decades there has been an effort towards the development of machine learning

methods to detect and classify the different skin cancer lesions. These methods are being created in

order to help dermatologists correctly diagnose the different lesions [24]. In the past, instead of CNNs,

was used Support Vector Machine (SVM), K-Nearest Neighbor, forest tree classifiers among others [35].

However, nowadays CNNs are the ones achieving the best results [22]. This can be seen by the type

of works used for the International Skin Imaging Collaboration Challenge, also known as ISIC [36]. The

question that now arises is: What are the most popular methods to diagnose skin cancer lesions?

The most common approach in deep learning is to apply supervised learning on neural networks [37]

[32]. In supervised learning, the network is given a labeled dataset and is trained to predict the output

of the corresponding input image. Therefore, when training the neural network, the system is capable

of learning from experience [37]. During the training phase, the network learns to extract discriminative

features from the images [38]. The accuracy of the system depends on both the amount and quality of

the available data and the used architecture.

In the context of skin cancer, supervised learning is also the most common approach. In order to

classify different skin lesions, the images from the dataset are considered as features and the medical

annotations associated with each image are the labels. The network is trained using labeled images
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and it is expected to acquire knowledge from the dataset in order to generalize the learned information

to the new input images [35]. This confirms that the main supervised learning problem resides in the

collection of a large dataset [39]. However, these large amounts of data are not easy to collect. Obtaining

medically labeled images is even harder [20].

In supervised learning, the choice of the weights initialization is typically done by training the network

from scratch or by using TL with pre-trained models. Training from scratch resides in assigning arbitrary

weight values to the system, which means a new model is being constructed. On the other hand, TL

uses weights that have already some image knowledge [28]. Therefore, this technique avoids the use of

huge data, which resulted in an easier and faster method when compared to training the network from

scratch [34].

2.2.1 TL

TL, as the name indicates, uses the foundation of exporting knowledge from one task to another. This

technique uses a model already pre-trained in a labeled dataset and ’recycles’ some of the initial convo-

lutional layers that have acquired some knowledge and train the rest of the layers to adjust to the new

target task. This way, the network begins with weights that have already some image knowledge that

has little similarities to the medical images. There are two phases when using TL: pre-training and the

fine-tuning phase.

The pre-training phase consists in training the network in a bigger and different dataset (e.g. Im-

ageNet), which prevents overfitting. The model is gaining general knowledge since it is being forced

to learn new images. Therefore, this results in a network that learned better representations from the

images [32]. A common approach is to use pre-trained CNNs, which have been trained using datasets

containing huge amounts of data. The main goal of this phase is to generalize and export knowledge to

a new target task. Mainly, instead of starting the target supervised task with no knowledge, the key idea

is to start already with some information that could be used to obtain better results in the performance

of the system.

In the fine-tuning phase, the weights are then transferred to the target task. The most common

approach is to modify the last FCLs of the network and train the new model to the target task, for

example, image classification [35]. Most works using deep neural networks for skin lesion detection

either use TL [27] or train them from scratch [28]. There are a set of different architectures used in TL.

Being the most commonly used the AlexNet [40], Google Inception V3 [41], ResNet-50 [6], Xception [42],

VGG-19 and VGG-16 [43].

TL can be very advantageous. However, once this technique requires the use of a non-related

dataset the learned weights can have problems generalizing well enough to the target tasks and datasets.

Since the classes from both tasks are very different [32]. Another visible limitation is the fact that there
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is still the need to use labels in the pre-training phase.

2.2.2 Skin Cancer Diagnosis

Table 2.1 shows different works that applied supervised learning techniques to skin cancer image anal-

ysis using the ISIC 2019 and 2018 challenge datasets [1] [2] [3]. For the ISIC 2018 challenge three

works ( [44] [45] [46]) from the top-7 leadership have been selected and for the ISIC 2019 three

works ( [47] [48] [49]) from the top-5 have been selected. Table 2.1 contains the following metrics:

Specificity (SP) and accuracy (ACC).

Table 2.1: Application of supervised learning to skin cancer diagnoses using ISIC challenge dataset [1] [2] [3].

Dataset Authors Extra Data Arquictecture Tranf. Learning SP(%) ACC(%)
Zhou et al., 2019 [47] - Ensemble Yes 95,2 91,7

Pollastri et al., 2019 [48] - Ensemble Yes 96,3 92,4ISIC 2019
Chouhan, 2019 [49] Private DenseNet Yes 96,7 91,0

Gessert et al., 2018 [44] HAM10000 dataset Ensemble Yes 98,4 97,2
Li et al., 2018 [45] - ResNet50 Yes 97,6 96,9ISIC 2018

Pan et al., 2018 [46] - ResNet Yes 96,7 95,9

From analyzing table 2.1 it is possible to verify that TL is a common approach used for skin cancer

diagnostic.

Thus, other questions arise: what if we could join the supervised learning technique with the self-

supervised, which is currently gaining popularity, and apply it to skin cancer diagnoses? This could solve

the TL limitations.

2.3 SSL

At this point, it is known that supervised learning, based on CNNs, should require the use of large

amounts of labels. However, there are a huge number of images that are not labeled and that can

be used by neural networks. As mentioned before, collecting manual labels is a very expensive and

time-consuming task, since the annotation is required to be done by an expert [23] [25].

Therefore, the concept of SSL emerged as there was a need to get advantage of the available

unlabeled data without creating labels, while still extracting visual features from the images.

2.3.1 TL vs SSL

SSL is similar to TL, but instead of pre-training a network using a labeled dataset, it uses an unlabeled

dataset and extracts feature representations from the images by forcing the network to execute simple

tasks. While executing these simple tasks the network learns parameters that are fine-tuned on the
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target task. In other words, the weights obtained during the visual feature extraction phase are then

used to initialize the convolutional layers of the CNN. Therefore, SSL recycles the first convolutional

layers of the pre-trained network (trained on the unlabeled dataset) and adjusts the rest of the layers to

the new target task.

2.3.2 Combining TL with SSL

The most common approach, while using SSL is to combine it with TL. Therefore, first the ImageNet

weights are used and, then, they are redefined using SSL, in an attempt to filter the generalization

problem that occurs when using only TL.

Recently, some works have adopted self-supervised approaches in the context of medical image

analysis. In the appendix A, table A.1 is presented. It shows different works that applied SSL techniques

to different medical applications. However, it is important to stress that most self-supervised techniques

are very recent and, consequently, there are still few works that use them. The main question that now

arises is: Does it make sense to apply SSL to the skin cancer diagnosis? This question is addressed

below.

2.3.3 Skin Cancer Diagnostic

SSL is a relatively new concept and consequently there are very few papers applied to the skin image

analysis. Table 2.2 shows different works that applied SSL techniques to different skin cancer problems.

Table 2.2: Application of SSL to skin lesion diagnosis.

Authors Goal Features Score SSL TL From Scratch TL + SSL
Li et al., 2020 [24] Segmentation ColorMe Dice (%) 86,3 86,7 84,6 87,7

Tajbakhsh et al., 2019 [29] Segmentation Colorization Acc (%) 35 52 33 -
Jigsaw - 83,4Kwasigroch et al., 2020 [23] Classification Rotation AUC (%) - 82,5 - 84,2
BYOL 94,6 ± 0,5

InfoMin 94,4 ± 0,5
MoCo 93,9 ± 0,7

SimCLR 95,6 ± 0,3
Chaves et al., 2021 [50] Classification

SwAV

AUC (%) - 94,8 ± 0,6 -

95,3 ± 0,6

Analyzing table 2.2 it is possible to conclude that the application of SSL to skin cancer diagnoses

can lead to better performance when combined with TL [24] [23] [29] [50] ( last column).

Both Li et al. [24] and Tajbakhsh et al. [29] applied SSL techniques related to color to the segmen-

tation of skin cancer. Kwasigroch et al. [23] applied two SSL techniques related to geometric distortion

to the skin cancer classification task. The closest work to this thesis is a preprint by Chaves et al. [50],

in which they assess five self-supervision learning candidates using contrastive techniques against a

competitive supervised baseline and conclude that SSL is competitive both in reducing variability and
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improving accuracies. However, all works lack of a qualitative assessment of the impact of the different

pre-training strategies.

The different SSL techniques will be addressed below.

2.3.4 SSL Techniques

SSL consists of two phases: the pre-training phase and the target task (which in this case is the image

classification). In the pre-training phase, the network is forced to execute a simple task, known as pretext

task. These tasks aim to extract different feature representations from the images. Therefore, in order to

have a good performance, it is important to select an adequate SSL technique depending on the wanted

target supervised task. These different tasks will be discussed below.

2.3.5 Geometric Distortion

The distortion technique considers that even if a set of transformations is applied to the image, the

image content remains the same [7]. This is important since by applying different transformations to

the same image and by forcing the network to predict which one was applied, it is able to extract better

visual features from the images. The better the learned features, the better is the knowledge of the

network and, therefore, better results the target supervised task will have. The different distortions can

be translation, rotation, scaling among others.

For example, if the dataset has a set of deer images, then the network has to identify all the deer

images (that are in the same class). To distinguish different classes, the CNN has to learn visual features

of each object that contribute to join the images from the same class and distinguish the different classes

[7]. Figure 2.3 exemplifies how different transformations applied to an image do not change its content.

Figure 2.3: The original image is shown in the top left corner, the remaining images are the result of random
transformations (extracted from [7]).

Different techniques can be included in these geometric distortion categories. Two examples of

works that apply different geometric distortion, the first applies a technique known as Exemplar-CNN [7]

and the other uses the Rotation [14] technique.
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2.3.6 Patch Relative Position

Another example is the patch technique, which takes advantage of the spatial structure of the image.

The key idea behind this technique is that each object, when divided into different parts, should maintain

spatial relations between its different positions [25]. This technique considers different patches from the

same image and trains a CNN to predict spatial relationships between them.

Different pretexts tasks can be applied. The work described in [8] predicts the relative position

between two random patches from the same image. Figure 2.4 exemplifies this technique [8]. Another

example [51] is instead of only two patches, it trains the model to predict the relative position of all 9

disordered patches, this is known as the jigsaw puzzle technique. Another pretext task [52] considers

visual features as a scalar-value. This technique defined that there was a relationship between counted

features in each patch and that different images could be identified by having a distinct number of

counted features.

In order to accomplish all the desired pretext tasks, the model is forced to learn features associated

with the spatial structure of the image, as well as understand the relationship between different parts of

the object and its shape [25].

Figure 2.4: Exemplification of the SSL task, on which the network is forced to predict the relative position of two
random patches (extracted from [8]).

2.3.7 Colorization

The colorization task emerged as an attempt of extracting features from the images by assigning color

to them. In fact, in order to understand the different appropriate colors in an image it is required to detect

the different objects [25].

Therefore, it was proposed a simple task, known as colorization [9], this technique given a black

and white image asked the model to predict an appropriate color of each pixel. In order to understand

which colors are appropriate to each object, the CNN has to understand which object is analyzing by

performing object recognition. Figure 2.5 exemplifies the output of the described technique [9]. Another
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proposed simple task is the ColorMe technique [24], where the model instead of receiving a black and

white image, received as input the green channel of an image and had to predict the red and blue

channels colorization of the same image.

Figure 2.5: Example of the output of the colorization technique [9] given a gray scale image. (extracted from [9]).

In the medical world, most of the images are in gray scale, however, dermoscopy images contain

color and that is one of the most important aspects in order to identify the malignancy of the lesions.

Using colorization as a pre-training task may be adequate for skin image analysis since the network can

extract knowledge from the color and texture of the skin [29], which may help the classification task.

2.3.8 Generative Modeling

The main idea of generative modeling is to force the network to reconstruct an image or just part of it

while learning feature representations [53]. The main concept is to generate new data from an existing

sample distribution and to achieve this the network needs to learn feature representations of the objects.

Generative models include different SSL techniques. The first category uses two different neural

networks that are trained to compete with each other, one network generates inputs, the generator, and

the other, the discriminator, detects if the input is a real image or if it is an output of the generator.

The Generative Adversarial Networks (GANs) [53] and Bidirectional GAN [54] are examples of these

techniques. For example, by training these models on human faces, the network is capable of learning

variables associated with the human facial expressions [53]. The second category aims to reconstruct

an image from a corrupted version of the input, known as denoising autoencoder technique [55], or to

inpaint, a missing piece of the original input, known as the context encoder technique [10]. Figure 2.6

exemplifies the result of the context encoder technique [10].
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Figure 2.6: Example of the output of the context encoder technique [10], where the network inpaints the missing
piece of an image. (extracted from [10]).

The generative modeling techniques, in order to generate new images (similar to the input) and to

predict missing parts of an image, reside on the fact that natural images are highly structured [10].

Therefore, this may not be the most adequate method to apply to the skin lesions images, since there

are a variety of different textures, colors, and shapes of lesions [20].

2.3.9 Contrastive Learning

Contrastive Learning has proven to be a good technique to extract visual features from the data without

human supervision. The main idea of contrastive learning is to focus on high level features rather

than paying attention to microscopic details or in other words, pixel-level details. In contrast to the

generative methods that measure the loss in the output space, contrastive methods measure the loss

in the representation space. This happens since, as the name indicates, contrastive methods rely on

contrasting positive and negative samples to learn image representations.

The key intuition idea is similar to the puzzles proposed to children, where it is expected from them

to understand the similarity between different versions or views of the same object and detect the dis-

similarity of different views of other objects. Figure 2.7 illustrates the intuitive task [15].

Figure 2.7: Intuitive idea behind SimCLR (extracted from [11]).

Contrastive learning uses a score function to measure the similarity between different features, from

an image which is similar to the original input image, known as positive sample, and also detect the dis-

similarity from an image that is different from the original image, also known as negative sample. There
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are many works apply different application of contrastive learning: the Momentum Contrast technique,

MoCo, [56], the ’Bootstrap your own latent’ technique, BYOL, [57], the CURL technique [58] and the ’ A

Simple Framework for Contrastive Learning of Visual Representations’, SimCLR [59].

All of the discussed techniques could be adequate to apply to the skin cancer diagnoses field. How-

ever, the ones that are believed to be more adequate to apply to the skin cancer classification problem

are discussed in the section 3.3.
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This chapter begins with a description of the thesis approach and is followed by the different initial-

ization techniques that were investigated, which will be discussed in further detail in section 3.3. These

different initialization methods include two different SSL techniques, which were chosen because they

are believed to be more adequate to apply to the skin cancer image analysis.

3.1 Proposed Approach

Most common approaches to the skin cancer diagnosis problem involve supervised learning using

CNNs. However, there are not enough labeled images available to train a network from scratch and

TL may not be appropriate, since it requires the use of images from different domains. This may lead to

a generalization problem caused by the different properties of dermoscopy and natural images.

Figure 3.1 shows an overview of the standard supervised learning pipeline, where the model is

trained using a labeled dataset. The architecture consists of an encoder, followed by a FCL to output the

various lesion classes. Two strategies can be used to initialize the weights of the encoder: from scratch

(random weights) or TL, usually from the ImageNet dataset [27].

Figure 3.1: Thesis proposed framework using only the supervised learning. The dataset from ISIC 2019 [1] [2] [3]
will be used.

This thesis proposes to explore a different strategy, which consists in applying SSL, to initialize the

weights of the network. Figure 3.2 describes the generic approach for the application of SSL. The first

step consists of pre-training a CNN (encoder) using the chosen pretext task and, secondly, fine-tuning

the parameters of the pre-trained network to the classification task (this time using labels), by recycling

the encoder and adding a FCL to output the various classes available in the ISIC 2019 dataset.

Figure 3.2: Thesis proposed framework using SSL technique applied to the skin cancer diagnosis. The last layers
of the pretext task network are replaced by a fully-connected layer to output 8 classes. For the pretext
task the unlabeled images from ISIC Archive [12] will be used and for the skin classification task the
labeled dataset from ISIC 2019 [1] [2] [3]. The purple triangle represents the last layers of the pretext
task architecture.
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This thesis will present a comparison between two initialization techniques for the skin cancer di-

agnosis. Therefore, two techniques will be studied: the Rotation [14] and the SimCLR [59], which are

believed to be accurate to apply to the skin cancer problem. A more detailed explanation of each method

application, as well as, an image summarizing which part of the CNN will be recycled are presented in

3.3.

In order to confirm the impact that different initialization techniques have on the model performance, a

systematic assessment will be performed, both quantitative and qualitative, of six initialization pipelines:

two with supervised learning that follow the standard approach found in the literature (random weights

and TL from ImageNet) - these will be this thesis baselines - and four self-supervised contenders (two

using the SimCLR and other two using the rotation technique, both experiments using random and

ImageNet weights as the starting point for the encoder).

There will be also executed two different pipelines that fuse the Rotation and the SimCLR technique,

these pipelines are believed to have better results once they combine distinct information from each

model. In the section 3.3 will be described the mentioned TL pipelines. The encoder used in these

systematic assessments is the ResNet-50.

Apart from these experiments, will also be considered the differences between the learned fea-

ture representations among the different training strategies using GradCam [60] and Local Interpretable

Model-agnostic Explanations (LIME) [61]. Further details about each algorithm are shown in section 3.4.

3.2 Data and Training Manipulation

During the execution of this thesis, some issues needed to be corrected both in data and training.

3.2.1 Image Pre-processing

The images presented in the ISIC archive were collected by different medical centers. Since each

center generated images with different sizes, colors, and aspect ratios, it was necessary to preprocess

the different images. This process normalized the color and allowed all the images to have the same

size while maintaining their aspect ratio.

First, all images were converted to squares and, in order to maintain their aspect ratio, there was

applied padding of pixels in the smallest margin of the image. The color of the added pixels was selected

according to the most predominant color of the image. Secondly, after turning the original image into a

square image, then it was resized to a size of 224x224. Figure 3.3 presents an example of the described

padding technique.
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(a) Original Image (1586x872) (b) Padding (224x224)

Figure 3.3: Example of the technique used to convert an image to square while maintaining the initial aspect ratio.

After resizing all the images it was applied the color constancy algorithm Shades of Gray as it is

proposed in [13]. The reason why the different images have different colors is mainly due to the light

source, therefore this algorithm estimates the color of the illuminant and transforms each image into

their canonical light source. Figure 3.4 presents an example of the described padding technique. By

applying this algorithm, all the resulting images have similar colors and the same size.

(a) Padding (224x224) (b) Shades of Gray (224x224)

Figure 3.4: Example of the color normalization using the Shades of Gray algorithm [13]

3.2.2 Training Specifications

In order to improve both the performance of the supervised and self-supervised classifiers, there has

been used the technique of artificially augment the training set which prevents overfitting. This technique

creates more variability in the data. To do so random flips (both horizontal and vertical) and rotations of

multiples of 90 degrees were performed to all the images presented in the training set. These geometric

transformations resulted in an augmentation of the training dataset, which allowed the network to have
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better performance.

The used dataset is highly imbalanced, in order to overcome this issue there have been applied class

weights to the loss function. This technique assigns to the less frequent classes the higher weight and

therefore the loss becomes a weighted average. This allows the model to be more robust since it does

not tend to classify all classes with the category that appears more frequently in the dataset. Therefore

it promotes a classifier that can learn all classes equally. Equation 3.1 presents the formula used for the

class weights.

wi =
Ntotal
Ni

, (3.1)

where wi is the weight for class i, Ntotal is the total number of samples in the training set and Ni is the

number of samples for class i.

3.3 Initialization techniques

This thesis aims to shed a new light on the application of SSL in the skin cancer context. Towards this

goal, it was developed a robust experimental framework to:

(i) investigate the impact of SSL on the training and generalization of a CNN for skin lesion diagnosis

and demonstrate that even with a small dataset there are benefits in using SSL. In order to better

compare the impact of SSL the model was trained using two initialization techniques: i) using

random weights and ii) ImageNet weights.

(ii) compare two different SSL approaches, one based on geometric distortion and another on con-

trastive learning.

(iii) for the first time provide a qualitative assessment of the impact of the different pre-training strate-

gies, using explainability approaches (Gradient-weighted Class Activation Mapping (Grad-CAM)

and LIME).

(iv) demonstrate the complementarity of the features learned by the SSL strategies and the benefits

of combining them.

Figure 3.5 demonstrates the discussed framework that will be executed in this thesis.
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Figure 3.5: Overview of the evaluated pipelines.

This is believed to be the first work to perform a robust quantitative and qualitative validation of the

impact of SSL and to demonstrate the importance of combining different SSL techniques. The main idea

behind these combination methods is that each model carries different information about distinct aspects

of an object and, therefore, combining different models can result in a more robust inference [62]. In other

words, when combining a set of models with complementary learned information their performance can

have an appealing improvement. In order to combine both Rotation and SimCLR techniques, there will

be used early and late fusion.

In the sequence, it will be discussed the different initialization techniques that will be applied in this

thesis.

3.3.1 Geometric Distortion

As mentioned before in section 2.3.4, geometric distortion is a SSL technique that takes advantage of

a simple set of transformations, which do not change the semantic content of the image. To be able

to identify which geometric distortion was applied, the network has to detect characteristics from each

object, forcing the CNN to learn semantic features of the image. Therefore, by applying this set of

transformations the model is able to extract useful information from the image.

The geometric distortion may have some limitations when applied to the skin cancer images, since

these images tend to be less stratified than, for example, a chest x-ray image. Currently, it is being

applied rotation techniques to the analysis of thorax images (recall table A.1), where there exists a clear

consistency in the structure, (e.g., the heart is always on the left side) and, therefore, the network is

able to learn visual features that characterize the structure of the thorax by predicting which rotation was

applied [29].
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Although the images of skin lesions are less structured, it was opted to apply the Rotation technique

[14] to the skin cancer classification problem. First due to its simplicity, which is interesting to compare

simpler techniques to more complex ones and, secondly, for comparison reasons since it was applied in

the previous work [23]. The question that now arises is: How does the self-supervised rotation technique

work?

Rotation [14] is a technique that can be seen as a 4-class classification problem, where the network

is forced to predict which rotation [0º, 90º, 180º or 270º] has been applied to the image. By learning to

distinguish which rotation was applied to the image, the model is forced to identify different details from

the input and therefore it extracts useful visual features from the different pictures. Basically, the main

intuition for the rotation technique is that, in order to correctly recognize which rotation was applied to

the image, the model has to learn to localize and detect the type of object as well as recognize their

orientation in the image. By doing so, the model will be able to relate the rotated object with its dominant

orientation. Figure 3.6 illustrates the pipeline of the Rotation technique.

Figure 3.6: Rotation pipeline. The model is represented by f(.) and fy(xy) is the probability of the input image
being rotated by the y rotation and predicted by model f(.) (extracted from [14]).

Given an input image the goal is to train a model f(.) and force it to estimate which rotation was

applied to the original image. Therefore, given a set of N images, the main objective is to find the

minimum value of equation (3.2).

minθ
1

N

N∑
i=1

loss(xi, θ), (3.2)

where xi is the input image, θ are the learnable parameters of model f(.) and the loss function,

loss(.), is given by equation (3.3).
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loss(xi, θ) = − 1

K

K∑
y=1

log(fy(g(xi|y)|θ)), (3.3)

where K = 4 is the number of discrete geometric transformations applied to the image, g(.|y) is the

term that applies the geometric transformation with label y to the image x and fy(.|θ) is the output of the

model that gives the probability distribution over all possible geometric transformations.

In this thesis, the encoder will have the ResNet-50 structure followed by a FCL to output the 4

pretended classes that correspond to each rotation applied to the image. Figure 3.7 describes this

thesis proposed framework approach for the integration of the self-supervised rotation technique into

the skin cancer classification pipeline.

Figure 3.7: Thesis proposed framework using the Rotation technique applied to the skin cancer diagnoses. The
last layers of the pretext task network are replaced by a FCL to output 8 classes. For both tasks it will
be used the dataset from ISIC 2019 [1] [2] [3], but for the pretext task the labels will not be used.

3.3.2 Contrastive Learning

Contrastive learning is believed to be adequate for the skin analysis application since it focus on high

level features rather than focusing on pixel-level details. This way, the network can have a better un-

derstanding of each lesion as a whole. In addition, as contrastive learning relies on contrasting positive

and negative samples to learn image representations, it is expected to extract visual features from the

images that help the network to better discriminate the different classes in the skin lesion classifica-

tion. Looking at the different works, included in the contrastive modeling, the proposed technique is the

SimCLR [59] due to its good performance and simple architecture.

Feature representations, in the SimCLR technique, are learned by maximizing the feature agreement

between differently augmented views of the same image via a contrastive loss, which will also accentuate

the dissimilarity among different images. The key idea is when comparing the multiple images using the

contrastive objective, the representations of corresponding views are ’attracted’ to one another and the

others are ’repelled’.

SimCLR can be divided into four main steps:

1. Sample a mini-batch of n samples, on each batch an image is given as an input, known as x.
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Then, random transformations are applied (random cropping, resize the image to its original size

with random flip, random color distortion and random Gaussian blur) in order to obtain a pair of two

augmented images, xi and xj . This pair is considered a positive pair. In the end there will exist 2n

augmented samples.

2. For each positive pair, xi and xj , the remaining 2(n − 1) images will be used as negative sam-

ples. Each augmented image within the pair is sent to an encoder, f(.), in order to obtain the

corresponding representations, hi and hj , which are the output of the average pooling layer.

3. The obtained representations are then applied to a Multi-layer perceptron (MLP) denoted in [59]

as projection head, g(.), to apply transformations and project them into the new space, zi and zj .

Thus, for each augmented image in the batch there is one vector, zi and zj . This space is where

the contrastive loss will be applied.

4. The contrastive loss function uses the cosine similarity, given by the following expression:

sim(zi, zj) =
zi
T zj

||zi||||zj ||
, (3.4)

where ||z|| is the l2 norm of the vector.

Equation 3.4 denotes the pairwise cosine similarity between augmented images. Images with

higher similarity will have Cosine similarity values close to 1. The SimCLR uses the so called

NT-Xent loss, which stands for normalized Temperature-Scaled Cross-Entropy Loss. This loss

function for a positive pair of examples is given by equation (3.5).

li,j = −log
exp(

sim(zi,zj)
τ )∑2N

k=1 1[k 6=i]exp(
sim(zi,zk)

τ )
, (3.5)

where 1[k 6=i] is an indicator function that checks if k = i then is 0 otherwise is 1 and τ is a temper-

ature parameter. Lastly, a loss over all pairs is given by equation (3.6).

L =
1

2N

N∑
k=1

[li,j(2k − 1, 2k) + li,j(2k, 2k − 1)] (3.6)

Based on this loss the representations, h and z, improve over time by approximating the features

of similar images in the space.
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Figure 3.8: SimCLR architecture represented for a positive pair and batch equal to 1 (extracted from [15])

Figure 3.8 contains an arrow pointing to the downstream tasks. Here, downstream tasks correspond

to the supervised target tasks to which the self-supervised model may be applied to. Here, it is proposed

to apply this SimCLR technique as an initialization of the convolutional layers of the network used for

image classification.

In this thesis will be used the ResNet-50 [6] network as the encoder. This network will have to be

modified in order to execute this pretext task (e.g., there will have to be added a MLP to project the

transformations to the new space z). In the self-supervised pre-training phase, each encoder (with the

same architecture), f(.), will receive two augmented images, denoted as xi and xj , of the unlabeled ISIC

2019 dataset [63]. Figure 3.9 describes this thesis proposed framework approach for the implementation

of the SimCLR technique applied to the skin cancer classification.

Figure 3.9: Thesis proposed framework using the SimCLR technique applied to the skin cancer diagnoses. The
last layers of the pretext task network are replaced by a FCL to output 8 classes. For the pretext task
the unlabeled images from ISIC 2019 will be used and for the skin classification task the labeled dataset
from ISIC 2019 [1] [2] [3].
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3.3.3 Fusion: Rotation and SimCLR

As mentioned before in the beginning of section 3.3, there will be also executed a set of experiments

that will combine both SSL techniques: Rotation and SimCLR. It is important to highlight that is also one

of the novalties presented in this thesis.

Both SSL techniques force the network to learn different tasks, which results in two models that might

learn different information. However, the question that arises is: ’Is the information of both techniques

complementary?’.

The goal of conducting these tests is to improve the global performance of both methods, assuming

that each model carries different information about each skin lesion. In other words, the combination of

both models can result in a more robust inference. To combine both Rotation and SimCLR techniques

will be used the early and late fusion approaches, which will be addressed below. Both techniques differ

at the level of fusion, early fusion concatenates the models in a feature level, while late fusion fuses the

models in the classification scores levels [62].

3.3.3.A Early Fusion

As the name indicates, early fusion combines the different methods in an earlier stage, which is in the

feature space. This is known as feature level fusion and it consists of combining all the feature vectors

into a single feature vector before sending them to the classifier. Therefore, this new model is trained to

learn a correlation between the different features from the input models. In order to combine the set of

models, the concatenation was used to jointly represent the different features. Figure 3.10 contains the

pipeline used for the combination of the Rotation and the SimCLR technique using the early fusion.

Figure 3.10: Early Fusion Pipeline in red it is represented the rotation model and in green the SimCLR.
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3.3.3.B Late Fusion

Late fusion fuses the models in their final level, which is the classification scores level. Usually, this

method uses fusion mechanisms that can consist of averaging, voting (which may result only with more

than two models), or learned models.

In this thesis, it was decided to apply the mean value to the two score vectors and select the highest

value that resulted in the combination of the final decision of both models. Figure 3.11 contains the

pipeline used for the combination of the Rotation and the SimCLR technique using the late fusion.

Figure 3.11: Late Fusion pipeline in red it is represented the rotation model, in green the SimCLR and in purple the
final score vector that results of mean of both score vectors.

3.4 Feature Assessment

This section will explain two algorithms used to understand what a CNN sees to make a decision (both

methods will be used in the qualitative assessment).

3.4.1 Grad-CAM

Grad-CAM [60] uses the gradient information that the last convolutional layers of the CNN have, to

determine the importance weights that each neuron has for the predicted class. Therefore, the main

goal of Grad-CAM is to explore the spatial information preserved in the convolutional layers to better

comprehend the parts of the input that contributed to the predicted decision.
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This method could explain activations in any layer of a deep network. However, it is mainly used in

the last convolutional layers of the network since these layers have the best compromise between spatial

information and high-level semantics.

The output of the Grad-CAM consists of a class-discriminative localization map, LcGrad−CAM ∈ Ru×v,

where u is the width and v the height for any class c. Grad-CAM can be divided into three steps:

1. Computing the gradient of the score for class c (before the softmax), yc, with respect to the feature

map activations, Ak, of a convolutional layer, i.e. ∂yc

∂Ak . Meaning that for a 2D input image, the

gradient is 3D, with the same shape as the feature map. There are k feature maps each of height

v and width u, therefore the feature maps have shape [k, v, u] which will be the same shape as the

gradients.

2. The previous gradients flowing back are global-average-pooled in order to compute the neuron

importance weights, αck:

αck =
1

uv

∑
i

∑
j

∂yc

∂Aki j
(3.7)

αck represents the importance of the feature map k for a target class c. It is important to recall that

the gradients have shape [k, v, u] and after doing the pooling, over the height and width, α with

dimension k is obtained.

3. Each αck value is used as the weight of the corresponding feature map. The final Grad-CAM

heatmap is calculated by doing a weighted sum of the feature maps. A Rectified Linear Unit (ReLU)

operation is applied to obtain:

LcGrad−CAM = ReLU(
∑
k

αckA
k) (3.8)

Notice that it is applied a ReLU operation, which only considers the positive values of the pixels,

since negative pixels tend to belong to other categories in the image.

3.4.2 LIME

LIME [61] is an explanation technique that intents to explain the predictions of a classifier by changing

its input and understanding how its predictions are altered.

To ensure that the explanation is interpretable, LIME modifies the original feature space and the in-

terpretable representation. Therefore, X = Rp is the feature space, r ∈ Rp is the original representation

of the explained instance and r′ ∈ X ′ is the interpretable representation. In addition, the model that is

being explained is f : X = Rp → R. LIME is able to explain each class separately, hence, in classifi-

cation, f(x) is the prediction of the relevant class. The explanation model is given by g: X ′ → R and
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L(f, g, wr) is the loss function that calculates how unfaithful g approximates to f in the locality defined

by wr. The complexity of the explanation g ∈ G is measured by Ω(g).

LIME minimizes the loss function L(f, g, wr), while ensuring that Ω(g) has a low value to be inter-

pretable by humans. Therefore, the LIME explanation, ε(r), is given by:

ε(r) = argming∈GL(f, g, wr) + Ω(g) (3.9)

The LIME approach can be divided into five steps:

1. Generates N samples, which are perturbed samples of the interpretable version of r′ (which is the

instance being explained).

2. By applying the mapping function is able to recover the previously perturbed observations in the

original feature space.

3. Predicts the outcome of every perturbed observation.

4. Computes the weights of every perturbed observation.

5. Solves equation 3.9 using the new dataset, consisting of perturbed samples, with the correspond-

ing response.

As seen in the five steps of LIME, this algorithm generates a new dataset containing perturbed

samples and the corresponding predictions. In images, perturbing individual pixels do not make much

sense, since many pixels contribute to one class. Therefore, LIME creates variations in the images by

first dividing the image into groups of pixels, known as ’super-pixels’, and switches them on and off.

Super-pixels are interconnected pixels that have similar textures and can be turned off by replacing

each pixel with a gray color. Therefore, in images, the interpretable space is a binary vector indicating

the presence or absence of a super-pixel. This means that to obtain the explanation of the prediction,

the image is perturbed by hiding one or more super-pixels to get the corresponding prediction. Figure

3.12 describes this process.
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Figure 3.12: Examples of perturbed instances of an image and their predictions (extracted from [16]).
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This chapter starts with a description of the dataset, which will be used in this thesis, it also addresses

the evaluation metrics and it is followed by a description and discussion of the experimental results

performed during this thesis.

4.1 Dataset

The dataset used during this thesis implementation will be the ISIC 2019 [1] [2] [3] dataset. However, for

the pre-training implementation using self-supervised techniques, it will be used the same dataset but

without the labels. ISIC 2019 is a set of dermoscopic images of skin lesions, with medically annotated

labels. In particular, each image was classified into one of 8 classes already discriminated in section 1.2.

Figure 4.1 illustrates eight different examples of skin lesion for each of the 8 different lesions classes:

Actinic Keratosis (AKIEC), Basal Cell Carcinoma (BCC), Benign Keratosis (BKL), Dermatofibroma (DF),

Melanoma (MEL), Melanocytic Nevus (NV), Squamous Cell Carcinoma (SCC) and Vascular (VASC).

The dataset also contains patient’s metadata, however, this information will not be considered during the

implementation of this thesis.

Figure 4.1: Examples of skin lesions from 8 different classes (extracted from [17]).

The dataset contains a total of 25,331 images containing ground truth labels for training and a total of

8,238 images for testing. It is important to note that the training set images contain medically annotated

labels and the testing set does not provide labels. Table 4.1 contains information about the training and

testing set.

Table 4.1: Total Number of Samples in the Training and Test sets.

Dataset Total MEL NV BKL DF VASC BCC AKIEC SCC
Train 25,331 4,522 12,875 2,624 2,39 253 3,323 867 628
Test 8,238
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4.2 Evaluation Metrics

The process of overfitting happens when a model is built with features that have high accuracy in the

training data but very little performance when used with new data. Cross-validation is a strategy that

tends to mitigate the occurrence of overfitting. There are different cross-validation strategies, for exam-

ple, the K-fold approach uses only each data once in the validation dataset, in other words, there are

no repetitions. Another example is the Monte Carlo sampling which contains repetitions in the validation

set. During this method, each split is independent from the other in a way that the original data is split

randomly for each different fold, even if it contains some repeated images.

To compare the different initialization techniques it was opted to use the Monte Carlo sampling tech-

nique since it was desired to evaluate the different methods and there was no problem with repeating

images between sets. It was opted to use 5-partitions since each method takes a considerable amount

of time to run. Each fold was created by dividing the original training set into a smaller training set (70%)

and a validation set (30%).

In figure 4.2 it is possible to see the division of the training and the validation dataset for one partition.

All five partitions have been confirmed to be different and they all have the same number of images for

each class.

Figure 4.2: Example of the distribution of the training and validation sets for each partition.

Below it will be explained the different evaluation metrics: Balanced Accuracy (BACC), Precision,

F1-Score, SP, and Area Under the Curve (AUC).
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4.2.1 Confusion Matrix

To compute the performance metrics the confusion matrix was performed, this has dimension k × k,

where k is the number of classes. To compute this matrix, there has to exist a one-vs-all strategy

for each class. Each matrix entrance, ij, contains the probability of predicting class, j, when the real

class is i. The one-vs-all strategy consists in assuming the positive class vs all the remaining classes.

Therefore, while making these comparisons four parameters can be taken from the confusion matrix:

True Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN) (from the point of

view of each class). Figure 4.3 represents an example of a 8-class problem.

Figure 4.3: Example of a 8-class confusion matrix, where the positive class is class 0. Each component corre-
sponds to the sum of the same color cells.

4.2.2 BACC

The used dataset is unbalanced, therefore, instead of using the weighted accuracy, the BACC was used.

This metric gives equal importance to all classes independently of the available number of examples.

BACC averages the Sensibility (SE) obtained for each class, SEi (also known as recall). The SEi is

given by:

SEi =
TPi

TPi + FNi
, (4.1)

where TPi is the number of true positives, i.e, the number of correctly classified examples from class

i and FNi is the false negatives for class i.
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Therefore, BACC is given by:

BACC =

∑7
i=0 SEi

8
. (4.2)

4.2.3 Precision

The precision measures which fraction of all the positive predicted records is actually positive. This

metric is given by equation 4.3.

precision =

7∑
i=0

TPi
TPi + FPi

, (4.3)

where TPi are the true positives and FPi are the false positives for class i.

4.2.4 F1-Score

F1-score can be seen as a weighted average of the precision and recall, where it reaches its best value

at 1 and worst score at 0. F1-score is given by:

F1− score =
2 ∗ (precision ∗ recall)

(precision+ recall)
(4.4)

4.2.4.A SP

SP measures the true negative rate and it gives the negative samples that were correctly classified. SP

for each class is given by:

SPi =
TNi

TNi + FPi
(4.5)

The final SP value is obtained:

SP =

∑7
i=0(SPi)

8
(4.6)

4.2.5 AUC

AUC score measures the ability of a model to distinguish between classes and is used as a summary of

the ROC curve [64]. ROC stands for “Receiver Operator Characteristic” and it gives the balance between

the true positive and the false-positive rate of a classifier. A model with good performance yields a high

AUC score and it means that the model is capable of distinguishing between the positive and negative

classes.
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4.3 Computational Environment

The experiments were carried out using the programming python language, using the libraries: Keras

[65] and Tensorflow [66]. The Google Colaboratory tool [67], that is a python notebook from Google

Research was used in most experiments. This is a platform that provides free access to a NVIDIA

Tesla K80 GPU. However, for the complementary study with the use of more data, it was opted to use a

laptop computer with the following specifications: Processor: AMD Ryzen Threadripper 3960X 24-core;

Memory: 128 GB RAM; Graphics Processing Unit (GPU): NVIDIA GeForce RTX 3090.

4.4 Effect of image transformations on SimCLR technique

The authors of SimCLR [59] stated that with the composition of data augmentation, the contrastive

prediction task becomes harder to execute, however, there is an improvement of the quality of the rep-

resentations.

Therefore, to first understand the effects of individual data augmentations in the SimCLR technique

and, secondly, to understand the importance of combining those data augmentations, preliminary ex-

periments were performed. It was opted to use a SVM since the objective is to evaluate the SimCLR

pretext task only, in other words, the feature space is being evaluated.

First, it was applied to the input image horizontal flips, then the composition of those flips with central

crops and finally it was added rotations of 0, 90, 180, or 270 degrees. It was also studied the impacts

of random color distribution and random gaussian blur, however, these experiments resulted in a lower

performance of the model. This could be explained by the fact that in the skin cancer classification

problem the color of each lesion, as well as their sharpness, is highly important. Figure 4.4 illustrates

the implemented augmentation compositions.

Apart from the discussed experiments, it was also evaluated the performance of the network in

the different feature spaces. These spaces were described in section 3.3.2: first, the 2048 vector,

corresponds to hi and hj vectors; the 256 feature space to the output of the first dense layer of the

projection head, g(.), and finally the 128 space, is described as the zi and zj vectors. As the original

paper stated, it was possible to confirm that the feature space which had better performance was the

2048 feature space, and therefore the classification task was applied in the space formed by the hi and

hj vectors.
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Figure 4.4: Example of the implemented data augmentation while using the SimCLR technique.

Tables 4.2, 4.3 and 4.4 contain the set of experiments that were executed in order to verify the

importance of combining different data augmentations. These data augmentations were evaluated using

a SVM in a 2048 dimensional space and were executed with a Gaussian RBF kernel with different

combinations of two parameters: gamma and C. Gamma is the parameter that decides how much

curvature the decision boundary has, the highest gamma the more curvature it has. The C parameter

determines the amount of data samples that are allowed to be placed in different classes. In other

words, it controls the flexibility of having data points on the wrong side of the boundary. A low value of C

maintains a smooth classification, on the other hand, a high C tries to minimize the misclassification of

training data.
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Analyzing tables 4.2, 4.3 and 4.4, it is possible to see that the highest BACC, for all three cases, is

with parameter gamma = 0.1 and C = 1, which is highlighted in bolt. As mentioned in paper [59], it was

possible to confirm, from visualizing all three tables, that with the combination of data augmentations the

accuracy tends to improve and that is why the following experiments were executed using SimCLR with

horizontal flips, central crops and rotation of multiple of 90 degrees.

Table 4.2: Evaluation of the 2048 dimensional space of the SimCLR pretext task using the SVM with Gaussian RBF
kernel and the data augmentation: horizontal flips.

Parameter train validation
g c ACC Balanced ACC ACC Balanced ACC

1 0,3386 0,3906 0,3089 0,2602
50 0,6735 0,8268 0,4278 0,23140,01

100 0,7449 0,8806 0,4280 0,2212
1 0,6385 0,7764 0,4649 0,2432
50 0,9999 0,9999 0,5309 0,20920,1

100 0,9999 0,9999 0,5308 0,2091
1 0,9999 0,9999 0,5103 0,1282
50 0,9999 0,9999 0,5104 0,12831

100 0,9999 0,9999 0,5104 0,1283

Table 4.3: Evaluation of the 2048 dimensional space of the SimCLR pretext task using the SVM with Gaussian RBF
kernel and the combination of data augmentation: horizontal flips and central crops.

Parameter train validation
g c ACC Balanced ACC ACC Balanced ACC

1 0,3685 0,3886 0,3437 0,2282
50 0,6676 0,8200 0,4303 0,23410,01

100 0,7061 0,8509 0,4305 0,2303
1 0,5877 0,7393 0,4446 0,2542
50 0,9955 0,9984 0,5321 0,22560,1

100 0,9975 0,9991 0,5296 0,2231
1 0,8392 0,8646 0,4995 0,2091
50 0,9999 0,9999 0,5317 0,15581

100 0,9999 0,9999 0,5317 0,1558

Table 4.4: Evaluation of the 2048 dimensional space of the SimCLR pretext task using the SVM with Gaussian RBF
kernel and the combination of data augmentation: horizontal flips, central crops and rotation.

Parameter train validation
g c ACC Balanced ACC ACC Balanced ACC

1 0,3355 0,3667 0,3163 0,2737
50 0,6662 0,8143 0,4518 0,26290,01

100 0,7045 0,8456 0,4551 0,2561
1 0,5655 0,7165 0,4489 0,2844
50 0,9989 0,9997 0,5392 0,24140,1

100 0,9999 0,9999 0,5400 0,2407
1 0,8708 0,9559 0,5161 0,2398
50 0,9999 0,9999 0,5680 0,19831

100 0,9999 0,9999 0,5680 0,1983
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4.5 Training Conditions

During this work, studies were performed to compare different initialization techniques. In order to exe-

cute these studies, there were implemented two different tasks: the pretext task (Rotation and SimCLR

technique) and the supervised classification task. The common conditions used for both tasks will be

addressed below.

4.5.1 Unsupervised Pretext Tasks

In the different used pretext tasks the following common conditions were implemented:

• The loss used for the rotation technique was the sparse categorical cross-entropy and for the

SimCLR was the NT-Xent loss and both techniques used the Adaptive Moment Estimation (Adam)

Optimizer algorithm.

• The batch size is equal to 32.

• The training for the rotation technique was performed during 40 epochs and the SimCLR was

trained until the loss of the validation set stopped improving.

• A dropout layer with p = 0.5 is used.

4.5.2 Supervised Skin Lesion Classification task

During the supervised classification task the following common conditions were implemented:

• The loss is the categorical cross-entropy with the Adam Optimizer algorithm.

• The batch size is equal to 32.

• The training was performed during 60 epochs

• The class weights as described in equation 3.1 are used.

• A dropout layer with p = 0.5 is used before the softmax layer.

4.6 Comparison between the different initialization techniques

This section is divided into two parts: i) a quantitative analysis, where a comparison between the different

approaches taking into consideration the selected evaluation metrics is made; ii) a qualitative analysis

that used the Grad-CAM technique [60] to convey a more interpretable analysis of the impact of the

various initialization strategies in the features learned by the model;
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4.6.1 Quantitative Analysis

Table 4.5 summarizes the median and standard deviation (across all partitions) of the scores obtained for

the different initialization techniques. Analyzing table 4.5 it is possible to elaborate different comparisons

that will be addressed below.

Table 4.5: Application of the Monte Carlo Sampling with different initialization techniques: training the model from
scratch or fine-tuning with ImageNet weights; application of two SSL techniques -Rotation and SimCLR.

Initialization Technique BACC (%) Precision (%) F1-Score (%) SP(%)

Scratch 46,82 ± 2,00 35,37 ± 3,84 37,24 ± 4,64 92,89 ± 0,55Baseline Imagenet 71,48 ± 1,82 65,14 ± 2,78 67,93 ± 1,75 96,04 ± 0,12
Rotation 54,92 ± 1,15 40,54 ± 1,84 43,19 ± 2,04 93,39 ± 0,18Scratch + SSL SimCLR 52,54 ± 0,86 44,62 ± 1,39 47,53 ± 0,96 93,94 ± 0,18
Rotation 71,47 ± 0,30 62,37 ± 0,74 65,70 ± 0,47 95,77 ± 0,05Imagenet + SSL SimCLR 65,51 ± 0,55 54,47 ± 2,71 58,28 ± 1,95 95,17 ± 0,18

4.6.1.A Trained from Scratch vs fine-tuned with ImageNet

By looking at table 4.5 it is possible to see that fine-tuning from the ImageNet weights is beneficial in

terms of performance and stability. In fact, the results using the ImageNet weights (row 2, 5, 6) tend to

have a higher median and lower standard deviation when compared to the ones trained from scratch

(row 1, 3, 4).

4.6.1.B Supervised vs Self-supervised training

It is also possible to confirm that there are some benefits while using SSL when compared to the stan-

dard training. For this evaluation, it will be executed two comparisons. The first one with the models

trained from scratch and the second one with the models pre-trained in ImageNet.

Models trained from scratch:

By looking at the baseline trained from scratch (row 1) and to both rows trained from scratch with

SSL techniques (row 3 and 4) it is visible that both self-supervised techniques presented higher median

and lower standard deviations. Looking at the BACC, the model pre-trained with the SimCLR technique

(row 4) had an increase of approximately 6% and the one with the rotation had an increase of 8%, when

both compared to the baseline (row 1). In terms of stability, both were approximately 1% more stable

than the baseline. This proves that when comparing models trained from scratch there is a tendency to

have higher accuracy and more stability (the standard deviation has a lower value) in the models that

use SSL. However, looking at the remaining metrics (Precision, F1-score and SP) it is interesting to

verify that the SimCLR technique has a better performance.
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Models fine-tuned with ImageNet weights:

By looking at the models trained using the ImageNet weights: the baseline (row 2) and to both

models that used the SSL techniques (row 5 and 6) it is visible that the latter two have higher stability

(lower standard deviation) for all metrics. Looking at the model that used the SimCLR technique (row

6) and analyzing the BACC, it is visible that it had lower accuracy than the baseline (-6%). This is a

complicated model that uses a contrastive loss in the pretext task and, therefore, it could have benefited

more from a higher number of unlabeled images. However, when looking at the standard deviation of

the SimCLR model it is possible to see that it was approximately 1% more stable than the baseline.

Analyzing the model with the rotation technique (row 5) it is possible to see that it had similar BACC to

the baseline, however, this model had higher stability (lower standard deviation of 2%), which means

that despite being similar it is more beneficial to use the rotation technique. Looking at the remaining

metrics (Precision, F1-score, and SP) it is possible to verify, then again, that both models have a lower

median, but tend to have more stability when compared to the baseline. It is very beneficial to have a

more stable model since this makes the model more trustworthy to apply to other data.

This proves that when comparing models trained with the ImageNet weights there is a tendency to

have more stability (the standard deviation has a lower value) in the models that use SSL.

4.6.1.C Rotation vs SimCLR technique:

Looking at the self-supervised models trained from scratch (row 2 and 3) it is possible to see that the

rotation technique has a higher BACC (2%), however, it is a bit less stable since the standard deviation

has a higher value of about 0.3%. The same can be confirmed by looking at the models first pre-trained

using the ImageNet weights and then pre-trained with the self-supervised techniques (rows 5 and 6). In

this case, the Rotation continues to have higher accuracy (6%) when compared to the SimClR model.

However, with the ImageNet initialization the Rotation technique is a bit more stable (0.2%). Looking at

the remaining metrics (Precision, F1-score, and SP) it is visible that the Rotation technique is also the

one with the best performance.

These results show that there are benefits while using SSL since there is less variability in the

performance of the classifier. This proved that when combining TL with SSL the generalization problem

that occurs when using TL is filtered. As mentioned before, TL uses natural images that have a different

domain to the skin lesion ones. Therefore the network resulted from applying TL, will have neurons that

remain loyal to the natural images. By applying SSL these neurons are ’corrected’ and the obtained

network generalizes better to the skin lesion images.
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4.6.2 Qualitative Analysis of the learned representations

It was opted to execute a qualitative analysis to understand what each model saw differently and what it

learned in order to make a decision. The Grad-CAM algorithm [60] was used to analyze the differences

between the representations learned by each technique. This is a technique used for visualizing where

a convolutional neural network model is looking. During this analysis, it was opted to choose the layer

’conv5 block3 out’, since it was the last layer of the ResNet-50 and, therefore, its corresponding heat-

map displays the most accurate visual explanation of the object being classified by the model.

4.6.2.A How to analyze the Grad-CAM algorithm?

First, it is important to recall that the output of Grad-CAM is a heat-map visualization for a given class

label. The given heat-map highlights the parts of the image that the CNN is looking at. Therefore,

this is an important tool, since it allows the user to visually verify the focus of the network. During this

visualization process, the VIRIDIS colormap was used. Figure 4.5 shows the selected colormap.

Figure 4.5: For the Grad-CAM heat-map the VIRIDIS color map was used, in order to visualize deep learning activa-
tion maps with Keras and TensorFlow. The yellow color corresponds to the higher values and, therefore
to a higher activation and the dark blue to smaller values which correspond to a lower activation.

To ease the comprehension of how to analyze the Grad-CAM heat-map it will be presented, in figure

4.6, an example of a skin lesion and its corresponding heat-map obtained using Grad-CAM algorithm.

First, it is important to recall that the heat-map given by the Grad-CAM shows both the importance given

to different aspects in the image as well as the capability of detecting, in this case, the skin lesion.

(a) Original Image (b) Heat-map (c) Overlap

Figure 4.6: Example of a Grad-CAM heat-map obtained from the SimCLR pre-trained model (layer name =
conv5 block3 out).

Figure 4.6 (a) represents the original skin lesion; (b) the heat-map obtained in the model and (c)

represents the overlap of the heat-map with the original image. In fact, by looking at figure 4.6 (b), it
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is visible that the model gives higher importance to the center of the lesion (in yellow), proving that this

model is quite accurate in detecting the skin lesion and also, despite being highlighted in dark blue, the

model gives lower importance to the margins of the image.

To simplify, the next figures will only present the original image, (a), and the overlap of the Grad-CAM

heat-map, (c).

4.6.2.B Visualization and interpretation of the learned representations using Grad-CAM

In order to demonstrate the differences between the learned representations two out of the five partitions

were examined. In every figure, there will be presented the different models and their corresponding

heat-map for each partition. In this section, it was opted to only analyze the models initialized with

ImageNet weights since they have better results.

Figure 4.7 shows the Grad-CAM heat-map obtained from the different models (fine-tuned with Ima-

geNet weights) for four skin lesions1. By analyzing this figure it is possible to observe that for the same

input image all three models look at different parts of each lesion. Therefore, apart from having different

performances, each model learns different information about each class of lesion. The SimCLR pre-

trained model tended to focus more on the parts of the lesion that presented higher contrast, while the

Rotation (visible in the second row for both partitions) looked more at the structure of each lesion. The

ImageNet pre-trained model, was the least intuitive to interpret since its focus varied between lesion and

skin.

Limitations of each SSL pre-trained model

After, analyzing a set of different images it was visible that each method had some limitations. Figure

4.8 presents some examples that highlight the limitations of each SSL pre-trained model.

It was observed that the model pre-trained with the Rotation technique tended to have difficulties in

detecting centered and symmetrical lesions. Each rotation of 90 degrees in symmetric lesions is similar,

therefore the model does not learn useful information about these types of images. This limitation is

visible in the third and fourth rows of figure 4.8.

The models pre-trained using the SimCLR technique showed to be more precise in detecting the

lesions since the lesions tended to have higher contrast to the skin. However, as some images contained

margins with higher contrast this method tended sometimes to focus more on the margins than the lesion

itself. This is visible in the first and second row of figure 4.8. Despite being the most precise method,

out of the three, in detecting the different skin lesions, the SimCLR method had a lower performance.

This means that despite being able to distinguish the lesions from the surrounding skin, this model was

unable to learn discriminative information to classify the correct class of lesion.

1The models were trained in different partitions, but the shown images are from the same dataset
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(a) First Partition (b) Second Partition

Figure 4.7: Example of different lesion visualizations using the Grad-CAM algorithm, which localizes class-
discriminative regions of each model (Baseline, Rotation and SimCLR).

(a) First Partition (b) Second Partition

Figure 4.8: Example of different lesion visualizations using the Grad-CAM algorithm, highlighting the limitations of
both SSL methods.
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4.7 Fusion of SSL Approaches

As expected, the qualitative assessment proved that apart from having different performances, each

network ends up learning different information about the images. Therefore, this led us to the following

question: Is the learned information of both techniques complementary?

In order to answer this question, both SSL technique were fused. Therefore as a consequence of

this interrogation, there were performed two tests that fused the two models pre-trained with SSL. First,

the early fusion was used, which fuses the different methods in the feature space. Secondly, it was used

the late fusion that fuses the models in the classification scores level (applied the mean strategy).

The results were evaluated with a quantitative and qualitative analysis. Therefore, this section is

divided into two parts: i) a quantitative analysis of the fusion of SSL strategies; ii) a qualitative analysis

that used the LIME algorithm [61] to convey a more interpretable analysis of the impact of the different

strategies in the features learned by the model.

4.7.1 Quantitative Analysis of the fused models

The results of both fusions appear in the last two rows of table 4.6 (row 3 and 4). It is possible to conclude

that, looking at the BACC, the early fusion had better results than any other model both in stability

and accuracy, proving that, in fact, the features of both models have complementary information. How-

ever, the late fusion proved to have worse results, meaning that the features are complementary, but not

the learned classification models.

Table 4.6: Application of the Monte Carlo Sampling with different initialization techniques (using ImageNet weights):
application of two SSL techniques -Rotation and SimCLR- and fusion of both techniques.

Initialization Technique BACC (%) Precision (%) F1-Score (%) SP(%)

Rotation 71,47 ± 0,30 62,37 ± 0,74 65,70 ± 0,47 95,77 ± 0,05Imagenet + SSL SimCLR 65,51 ± 0,55 54,47 ± 2,71 58,28 ± 1,95 95,17 ± 0,18
Early Fusion 73,78 ± 0,24 68,41 ± 4,13 70,99 ± 2,61 96,40 ± 0,36Fusion Late Fusion (mean) 57,09 ± 2,19 50,28 ± 1,41 52,02 ± 1,08 94,24 ± 0,19

4.7.2 Qualitative Analysis of the fused models

To analyze the learned representations of the fused model, the LIME algorithm [61] was used. It was not

possible to use Grad-CAM since for visualization purposes this method used the last layer of the ResNet

and the fused model has two ResNet-50. LIME is a model-agnostic, which means that is applicable to

any machine learning model. It was opted to only analyze the model that used Early Fusion since it had

better results.
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4.7.2.A How to analyze the LIME algorithm?

It is important to recall that LIME attempts to interpret a model by changing its input and understanding

how its predictions are altered. This model provides local model interpretability. Therefore, it changes

the data sample by altering the feature values and it observes the impact that each alteration has on the

output. By doing so this method is able to detect which features are important. During this visualization

process, the RdBu diverging colormap was used. Figure 4.9 shows the selected colormap.

Figure 4.9: For the LIME heat-map the RdBu color map was used. The blue color corresponds to the higher values
and the red to smaller values.

To ease the comprehension of how to analyze LIME it will be presented, in figure 4.10, an example

of a skin lesion and its corresponding LIME output.

(a) Original Image (b) Top-5 superpixels (c) Overlap

(d) Pros in green and Cons in
red

(e) Heatmap containing the explanation
weights

Figure 4.10: Explaining an image classification made by the prediction of the SimCLR pre-trained model. The top
class was AKIEC.
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Figure 4.10 (a) represents the original skin lesion; (b) the top-5 super-pixels that are most positive

towards the predicted class with the rest of the image hidden; (c) represents the overlap of the top-5

super-pixels with the original image; (d) represents the pros (green) and cons (red) with weight at least

0.1 and (e) which plots the explanation weights onto a heat-map visualization. In fact, by looking at

figure 4.10 (b), it is visible that the model detects the center of the lesion, which correspond to the pixels

with a higher importance in determining the predicted class (as is visible in figure 4.10 (e)).

To simplify, in the next figures it will only be presented the original image, (a), the top-5 super-pixels,

(c), and the heat-map, (e).

4.7.2.B Visualization and interpretation of the learned representations using LIME

Figure 4.11 shows the output obtained using the LIME algorithm for the different models. By analyzing

this figure, it is possible to conclude that, for the same input image, both SSL pre-trained models look at

different parts of each lesion (first and second rows of figure 4.11 a), b), c) and d)). This was already

confirmed in Section 4.6.2.B. Additionally, it is also possible to verify that the model, resulted from early

fusing the features of both SSL techniques, also looks at different aspects of the image and, combines

the learned information from both models (last row of figure 4.11 a), b), c) and d)). Looking at figure

4.11 it is visible that the fused model was more precise in highlighting the skin lesion since the

weights given for the Rotation and the SimCLR when combined resulted in higher importance in

the lesion part.

As expected, this qualitative assessment proved that the fused model, apart from having higher

performance, was also more accurate in detecting the different skin lesions. Therefore, this proved

that the learned information of both SSL pre-trained models is, in fact, complementary. However, the

question that arises is: ’Apart from being complementary is the combined information sufficient to avoid

some of the limitations highlighted in section 4.6.2.B?

Figure 4.12 shows four examples of skin lesions where both the SimCLR or the Rotation pre-trained

models had difficulties in detecting the skin lesion.

Looking at figure 4.12 (a) and (b) it is visible that the rotation technique had difficulties in detecting

the skin lesion. However, the combination of both methods proved to overcome this limitation. In figure

4.12 (c) and (d) it is possible to confirm that since both lesions have less contrast than the margin and

since they are quite symmetrical, both SSL pre-trained models had difficulties in detecting the lesion.

However, when the features are combined the importance weights tended to highlight the lesions.

Therefore, by combining both models some of the limitations presented in both SSL pre-trained

models could be avoided.
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Figure 4.11: Example of different lesion visualizations using the LIME algorithm for each SSL pre-trained model
(Rotation, SimCLR and Early Fusion) for partition 1.
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Figure 4.12: Example of different lesion visualizations using the LIME algorithm for each model SSL pre-trained
model (Rotation, SimCLR and Early Fusion) for partition 1. This figur highlights the limitations of both
SSL methods.

4.8 Further Quantitative Evaluation of all initialization techniques

In order to better analyze the results obtained in table 4.5 and table 4.6 it was performed a statistical

significance test which is presented in the appendix A.

To corroborate the conclusions made by analyzing table 4.5 and table 4.6 a boxplot was implemented.
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Figure 4.13 presents the boxplot containing all different initialized models (minus the late fusion since it

had a worse performance).

Figure 4.13: Boxplot of the different implemented models. The green line represents the median and the box rep-
resents the middle 50% of all data points, which represent the core region where the data is situated.
The baseline models are written as ’base’, the rotation as ’rot’, the early fusion model as ’early’ and
the models fine-tuned with ImageNet weights end with ’img’ in their name.

Looking at figure 4.13 it is possible to confirm that the model with the highest accuracy and stability

is the early fusion. This model gathers both learned features from the Rotation and SimCLR pre-trained

models and it confirms that this learned information is complementary. The Rotation (rot img) model

has similar accuracy as the baseline model pre-trained in ImageNet (base img), however, it is more

stable. Both SimCLR (simclr and simclr img) and Rotation (rot and rot img) models have higher stability

than the baseline (base and base img), this is possible to confirm since the box is narrower for both

self-supervised models.

4.8.1 State-of-the-Art comparison

As mention in section 2.3.3, SSL has been used in the skin image context. Both Li et al. [24] and

Tajbakhsh et al. [29] applied SSL techniques with color-based pretext tasks to the segmentation of skin

lesions. Kwasigroch et al. [23] applied two SSL techniques based on geometric distortion to the skin

cancer classification task. The closest work to the one executed in this thesis is that of Chaves et

al. [50], in which they assess five SSL contrastive techniques against a competitive supervised baseline

and conclude that SSL is competitive both in reducing variability and improving model accuracy. Despite

the promising results, it is still unclear which is the best SSL strategy for skin images and all works focus

solely on a quantitative analysis, disregarding the impact of SSL on the features learned by the model.
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Therefore, to better compare this thesis trained models with the classification ones presented in table

2.2, the AUC score was implemented. The results obtained are shown in table 4.7.

Table 4.7: Evaluation of the different models using the AUC score.

Initialization Technique AUC (%)

Baseline 94,64 ± 0,31
Rotation 94,72 ± 0,25
SimCLR 92,92 ± 0,12Imagenet + SSL

Early Fusion 94,94 ± 0,22

Analyzing table 4.7 it is possible to confirm, that both the Rotation and the Early fusion model have

better results than the baseline. In addition, as seen before in section 4.6 it is also visible that all three

models have lower variability than the baseline model.

To ease the state-of-the-art comparison, the results were reunited in table 4.8. This table presents

this thesis AUC score as well as both the Kwasigroch et al. [23] and the Chaves et al. [50] results (recall

table 2.2). It is important to recall that all three works have been trained using different datasets with

different purposes. The ISIC 2017 [2] task had the objective of differentiating two classes - malignant

(MEL) and benign (NV and BKL). The ISIC 2020 [68] had the same purpose, but it included more

lesions within each class: benign (NV, atypical melanocytic proliferation, café-au-lait macule, lentigo

NOS, lentigo simplex, solar lentigo, lichenoid keratosis and BKL) and malignant (MEL).

Table 4.8: Evaluation of the different models using the AUC score.

Authors Dataset Technique AUC (%)

Jigsaw 83,4Kwasigroch et al., 2020 [23] ISIC 2017 Rotation 84,2
BYOL 94,6 ± 0,5

InfoMin 94,4 ± 0,5
MoCo 93,9 ± 0,7

SimCLR 95,6 ± 0,3
Chaves et al., 2021 [50] ISIC 2020

SwAV 95,3 ± 0,6
Baseline 94,6 ± 0,3
Rotation 94,7 ± 0,2
SimCLR 92,9 ± 0,1Thesis work ISIC 2019

Early Fusion 94,9 ± 0,2

Looking at table 4.8, it is possible to confirm that the results presented in this thesis have higher

AUC score than the ones presented in the Kwasigroch et al. [23] work. In addition, looking at the scores

obtained in the Chaves et al. [50] work, it is visible that this thesis best work, which is the early fusion

model, presented a better performance than most models (Sup. Baseline, BYOL, InfoMin, and MoCo).

However, the early fusion model showed to have lower score than both the SimCLR (-0.66%) and the
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SwAV (-0.36%) models. Analyzing the standard deviation it is possible to conclude that the results

obtained in this thesis show even less variability than the ones presented in the Chaves et al. [50] work.

4.9 Complementary Study: Study the impact of adding more data

to the SSL pre-trained models

SSL is known to benefit from using more data. In the pre-training phase this technique does not use

labels, therefore the performance of the network increases with the variability of the available data. The

more data, the more accurate the model can be to execute the intended SSL technique. It is also

important to recall that depending on the level of difficulty of the task, the more it benefits from using

more data. For example, when applying a contrastive task the network gathers the features which are

similar and repels the different ones, meaning that this is quite difficult for a network to do. However,

when using simpler tasks, such as geometric distortion, the network would benefit less from using more

data that when applying contrastive learning tasks.

The impact of adding more data on the SSL pre-trained models was studied. It was opted to add

50% more data (using the ISIC 2020 dataset [68]). To compare this complementary study with the one

executed in section 4.7.1, table 4.9 was created.

Table 4.9: Application of the Monte Carlo Sampling using more 50% of unlabeled data.

SSL Dataset Technique BACC (%) Precision (%) F1-Score (%) SP(%)

Rotation 71,47 ± 0,30 62,37 ± 0,74 65,7 ± 0,47 95,77 ± 0,05
SimCLR 65,51 ± 0,55 54,47 ± 2,71 58,28 ± 1,95 95,17 ± 0,18ISIC 2019

Early Fusion 73,78 ± 0,24 68,41 ± 2,07 70,99 ± 2,61 96,40 ± 0,36
Rotation 70,22 ± 0,98 62,89 ± 1,56 66,04 ± 0,96 95,73 ± 0,39
SimCLR 67,48 ± 0,58 64,34 ± 6,05 65,16 ± 3,69 95,44 ± 0,6350% more data

Early Fusion 74,28 ± 0,58 71,15 ± 1,57 73,03 ± 0,96 96,41 ± 0,15

Analyzing table 4.9 it is possible to conclude that, in fact, the SimCLR task benefited from the use of

more data. On the other hand, the Rotation technique had similar metrics to the previous training. This

could be explained by the fact that this is a simpler task. The fusion of both techniques also showed to

benefit with the use of more data, this was expected since the SimCLR also improved.

4.9.1 Differences in the predicted classes using the SimCLR technique

In order to understand the impact of adding more data while using the SimCLR technique, the different

confusion matrices, obtained through the distinct models, were compared: using ISIC 2019 dataset,

using 50% more data.
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First, it is important to highlight that the common lesions between the ISIC 2019 and 2020 dataset

[68] are only NV, BKL (benign) and MEL (malignant) lesions. Therefore, the results presented in this

section could have been better if the ISIC 2020 dataset contained more lesions from the different classes

presented in the ISIC 2019 dataset. It was opted to use the 2020 dataset since the ISIC 2019 used

images from previous challenges.

Figure 4.14 shows two different confusion matrices regarding the validation set obtained for one of

the partitions.

(a) Using the ISIC 2019 dataset (b) Using 50% more data

Figure 4.14: Confusion matrices obtained for the SimCLR model for the best partition.

The diagonal of the matrix represents the sensitivity by class and ideally would be 1. This would

mean that all classes were classified correctly. The remaining entries represent the misclassifications.

Looking at figure 4.3 (a) and (b) it is possible to confirm that the classes which benefited most from the

addition of 50% more data were: the SCC (+13%), BKL (+10%), MEL (+8%), DF (+7%) and finally NV

(+2%).

Looking at all partitions it was possible to see similar results, however, the most common conclusion

was the improvement of the melanoma classification, this could be explained by the fact that this 2020

dataset is highly imbalanced. This means that there was mainly an improvement in the benign classes

(BKL, DF and NV) and the MEL class, which could be explained by the fact that the ISIC 2020 only

contained benign and MEL lesions.

Appendix A contains the study executed with the use of 100% more data.
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4.10 Final Evaluation in the Test Set

In order to verify how well the models obtained in this thesis generalized, it was opted to evaluate them

using the test set provided by the ISIC 2019. This is an independent set without ground truth data, and

the evaluation of the models was performed on an online platform [69].

To compare the results obtained using the test dataset 2, the ISIC leaderboard [12] was analyzed.

The classification in this challenge is based on the weighted accuracy of all classes (weighted average

of the SE). It is important to recall that the test dataset contains a class unknown. However, in this

thesis, it was opted to use the BACC score (without taking into account the class unknown), since the

same importance is given to all the classes, even if they contain a different number of examples.

Table 4.10 contains the performance achieved by the different initialization models implemented in

the validation and held-out test set for the best partition. The accuracy containing the class unknown is

presented in the column ’Test w/ UNK class’ of table 4.10. However, the BACC without considering the

unknown class is presented in the column ’Test’ 3 of table 4.10.

Table 4.10: Evaluation of the different models using the test set.

BACC
SSL Dataset Technique Valid Test w/ UNK Test

Baseline 0,715 0,443 0,447
Rotation 0,715 0,481 0,499
SimCLR 0,656 0,444 *ISIC 2019

Early Fusion 0,738 0,446 0,483
Rotation 0,712 0,451 0,478
SimCLR 0,675 0,452 0,43350% more data

Early Fusion 0,743 0,423 *

Analyzing table 4.10 it is possible to verify that both the SimCLR and the fused model increased their

BACC score performance in the test set with the use of more data. This contributed to prove that the

more data, the more accurate the model can be to execute the intended SSL technique depending on

the level of difficulty of the task. Meaning that the Rotation technique showed little improvement since

it is a simpler task than the SimCLR technique. It is also visible that the model with better results in

the evaluation of the test set is the Rotation model. This could be explained by the fact that the pre-

processing process of the dataset was made using padding of black margins, which as seen in section

4.6.2.B, can be a limitation of the SimCLR model. The model tended to focus more on the parts of higher

contrast of the image, which in this case were the margins. Therefore, since the SimCLR had a worse

performance the fusion of both models also had difficulties due to the higher contrast in the margins.

2The pre-processing of the test set instead of adding the most predominant color of the image (as shown in section 3.2.1), it
was opted to add black margins, due to time restrictions.

3The entries containing ’*’ were not presented in the top 200 of the online platform and, therefore, the SE score was not
available. Meaning that the BACC could not be calculated.
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Additionally, it is interesting to verify, as seen before in section 4.6.1 and 4.7.1, that both the Rotation

and the Early Fusion models had a higher performance than the baseline model.
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5.1 Conclusions

This thesis performed a robust assessment of the impact of SSL as a pre-training technique for skin can-

cer diagnosis. In particular, it performed a quantitative and qualitative analysis of the different pipelines.

During this assessment, two SSL techniques were compared: Rotation and SimCLR. The experimental

results show that there are benefits while using SSL. It was possible to observe that when applying these

techniques, the classification CNN appeared to have more stability in its performance. It is beneficial

to have models that are more stable since this means they are more trustworthy to apply to other data.

Additionally, this proved that when combining transfer learning with SSL, the generalization problem that

occurs when using TL is filtered. TL uses natural images that have a different domain to the skin lesion

ones. Therefore the network resulted from applying transfer learning, will have neurons that remain loyal

to the natural images. By applying SSL these neurons are ’corrected’ and the obtained network gener-

alizes better to the skin lesion images. This is believed to be the first work that provided a qualitative

analysis of the features learned by the SSL strategies. This study led to the conclusion that each model

learned different information from the data. Additionally, it was also possible to conclude that each SSL

technique had some limitations: the Rotation had difficulties in detecting symmetrical lesions, while the

SimCLR, as some images contained margins with higher contrast, tended sometimes to focus more on

the margins than the lesion itself.

In order to verify if the information learned by both SSL models was complementary, it was studied

the combination of both techniques that resulted in the highest performance (BACC = 73, 78 ± 0, 24%).

In addition, it was also possible to conclude that the model resulted from combining both SSL techniques

overcame some limitations that each SSL model had individually.

As SSL is known to benefit from using more unlabeled data, it was also studied the impact of adding

50% more data to the SSL pre-trained models. It was possible to observe that depending on the level

of difficulty of the task, the more the model benefits from using more data. Therefore, the SimCLR task

benefited more from the increase of data, since this is a more challenging task when compared to the

Rotation. The fusion of both techniques also showed to benefit with the use of more data, this was

expected since the SimCLR also improved.

Finally, the pre-trained models were evaluated using the test set. This study reinforced the conclu-

sion that the SimCLR model trained using more data had higher capability to generalize to new data.

Additionally, the Rotation and the Early fusion models have also shown to have higher performance than

the baseline model even in the test set.
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5.2 Future Work

The results obtained in this thesis highlighted the importance of using SSL techniques. However, there

is room to improve the results. Therefore, some points can be highlighted regarding some topics that

can be studied in future works:

• During this thesis for the SimCLR there were used three combinations of image transformations:

horizontal flips, central crops and rotations (0, 90, 180, or 270 degrees). The impact of ran-

dom color distribution and random gaussian blur were also evaluated, however, these experiments

resulted in a lower performance of the model. In the future it could be interesting to try less

’aggressive’ transformations such as normalizing each image color, which could result in better

performance;

• Instead of combining both models using early fusion, it could be interesting to train a single network

to execute both SSL techniques simultaneously and, therefore, its final performance could have

better results;

• It could be interesting to also try another SSL technique and combine it with the SimCLR and

the Rotation technique using the Early Fusion method. Therefore, since the Rotation technique

focused more in the structure of the lesion and the SimCLR in the contrast, it could be beneficial

to implement in the future a technique related to color such as the ColorMe [24] technique.
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A.1 SSL applied to the medical image analysis

As mentioned in section 2.3.1, in order to better understand what was being done with the SSL tech-

niques and since there were few works in the skin cancer field, it was opted to analyze the implemented

techniques in the context of medical image analysis. Table A.1 shows different works that applied SSL

techniques to different medical applications. However, it is important to stress that most self-supervised

techniques are very recent and, consequently, there are still few works that use them.

Table A.1: Application of self-supervised learning to medical diagnosis.

Authors Goal Features SSL TL Scratch TL + SSL
Fetus Classification Context Restoration (CR) 87,56 - - -

Abdominal Multi-organ Localization Context Restoration (CR) 5,99 ± 9,83 - - -Chen et al., 2019 [25]
Brain Tumour Segmentation Context Restoration (CR) 85,57 - - -

Lung Lobe Segmentation Rotation 0,94 - 0,92 -
DR Classification Rotation 0,75 0,71 0,70 -Tajbakhsh et al., 2019 [29]

FPR Nodule Detection 3D Patch reconstruction 0,72 - 0,71 -
Li et al., 2020 [24] Cervix type Classification ColoMe 61,65 57,39 62,50 65,91

Analyzing table A.1, it was possible to see that the application of self-supervised learning to medical

image analysis ( [25] [29] [24]) can lead to better performance when comparing to training from scratch or

transfer learning [29]. However, this may not always happen since there are a variety of self-supervised

techniques and each technique can affect positively or negatively the performance depending on the

goal task. For example, when segmenting the lung lobe [29] the rotation technique [14] was applied,

once there is a consistency in the thorax geometry. This way, by implementing random rotation on the

images and by forcing the network to predict which rotation was applied, the neural network learns visual

features that characterize the structure of the thorax. Hence, when applying the weights from this pretext

task the segmentation improves when compared to pre-training from the ImageNet.

A.2 Statistical Significance test

As mentioned in section 4.8, here is presented the executed statistical significance test. Since the data

did not have a Gaussian distribution it was not possible to apply the t-test. Therefore, the Kolmogorov-

Smirnov [70] test was applied to see if the difference between the means of two distributions is statisti-

cally significant or not. In this test, if the p-value is very small, this suggests that the difference between

the two populations is significant. The ’ks 2samp’ python function was used.

To better compare the different methods there were executed 9 comparisons. First, within each

method (baseline, SimCLR and Rotation), secondly within the models trained from scratch and, thirdly,

between the models fine-tuned using ImageNet weights. Table A.2 reunites the results obtain for this

statistical test.
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Table A.2: Results obtained through the statistical significance test.

Initialization 1st Model 2nd Model P-value Conclusion
Base Base img 0,0079 Diferrent distributions (reject Ho)
SimCLR SimCLR img 0,0079 Diferrent distributions (reject Ho)Within Each Method
Rot Rot img 0,0079 Diferrent distributions (reject Ho)
SimCLR Rot 0,079 Same distributions (fail to reject Ho)
SimCLR Base 0,0079 Diferrent distributions (reject Ho)Scratch
Rot Base 0,0079 Diferrent distributions (reject Ho)
SimCLR img Rot img 0,0079 Diferrent distributions (reject Ho)
SimCLR img Base img 0,0079 Diferrent distributions (reject Ho)ImageNet
Rot img Base img 0,873 Same distributions (fail to reject Ho)

Analysing table A.2 it is possible to confirm, as seen before in section 4.8, that both models trained

from scratch: the SimCLR and the Rotation (Rot) have similar median value and both models fine-tuned

with ImageNet: the Baseline (Base img) and the Rotation (Rot img) also have similar median value.

This means, that these models are comparable.

A.3 Complementary Study: Study the impact of adding 100% more

data to the SSL pre-trained models

As seen in section 4.9, SSL is known to benefit from using more data, in this section it was studied the

impact of adding 50% more data on the SSL pre-trained models. Here, it was opted to verify the impact

of adding 100% more data (using the ISIC 2020 dataset [68]). Table A.3 gathers the evaluation metrics

obtained from training the previous models using 100%1 more data.

Table A.3: Application of the Monte Carlo Sampling using 100% more of unlabeled data.

SSL Dataset Technique BACC (%) Precision (%) F1-Score (%) SP(%)

Rotation 69,42 61,62 64,72 95,42
SimCLR 69,66 61,47 64,81 95,49100% more data

Early Fusion 76,28 74,35 75,25 96,2

Despite having used only one fold, it is visible in table A.3 similar results as obtained in section 4.9.

The SimCLR task benefited from the use of more data. The Rotation technique had similar metrics to

the previous training and the fusion of both techniques also showed to benefit with the use of more data,

this was expected since the SimCLR also improved.

1Due to time restrictions the results using 100% more data were obtained only from one fold.
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A.3.1 Differences in the predicted classes using the SimCLR technique

In order to understand the impact of adding more data while using the SimCLR technique, the different

confusion matrices, obtained through the distinct models, were compared: using ISIC 2019 dataset,

using 50% and 100% more data.

Figure A.1 shows three different confusion matrices regarding the validation set obtained for one of

the partitions.

(a) Using the ISIC 2019 dataset (b) Using 50% more data

(c) Using 100% more data

Figure A.1: Confusion matrices obtained for the SimCLR model for the best partition.

As seen in section 4.9.1, looking at figure 4.3 (a) and (b) it is possible to confirm that the classes

which benefited most from the addition of 50% more data were: the SCC (+13%), BKL (+10%), MEL

(+8%), DF (+7%) and finally NV (+2%). However, analyzing figure 4.3 (a) and (c) it is visible that when

adding 100% more data the classes which improved were: the SCC (+12%), BKL (+12%), MEL (+11%),
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DF (+12%) and finally VASC (+1%).
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ON THE IMPACT OF SELF-SUPERVISED LEARNING IN SKIN CANCER DIAGNOSIS
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ABSTRACT

Deep neural networks (DNNs) are the standard approach
for image classification. However, they require a large
amount of data and corresponding annotations. Collecting
medical data is a difficult task, due to privacy restrictions.
Moreover, it is even harder to obtain the clinical labels, since
these must be provided by specialists. Self-supervised learn-
ing (SSL) has emerged as a possibility to overcome this issue,
since it uses non-annotated data to pre-train the DNN. Re-
cently SSL has been applied in the context of skin cancer.
However, the results were not conclusive. Moreover, a proper
analysis of the impact of different SSL approaches is still
missing. In this paper we investigate two SSL approaches:
Rotation and SimCLR. Our results highlight the benefits
of applying self-supervised learning to the classification of
dermoscopy images. Additionally, we demonstrate that these
approaches learn different and complementary features.

Index Terms— Skin Cancer, Deep Learning, Self-
Supervised Learning, Dermoscopy

1. INTRODUCTION

Skin cancer is one of the most common types of cancer world-
wide [1]. In the past decade, the number of melanoma cases
diagnosed has increased by 47% and in non-melanoma can-
cer about 5.400 people worldwide die every month due to this
disease [2]. Skin cancer is also one of the most treatable
forms of cancer when detected in an early stage. However,
late detection can have a significant impact in mortality rates.
Therefore, there is a need to develop a convenient and precise
method to perform early diagnosis [3].

Over the past decade, deep neural networks (DNNs) have
been developed to assist human experts and accelerate the
process of skin cancer diagnosis [3]. However these methods
require a huge amount of annotated data to obtain satisfac-
tory results. Collecting medical data is a difficult task, due
to privacy and law restriction, and it is even harder to obtain
clinical annotations, since these must be provided by special-
ists [4]. To overcome this issue, the research community has
been relying on transfer learning. This method consists of
first training a model for a task using a large data base and
then “recycle” it for a new target task [5]. These pre-trained
models usually have deeper architectures than what is needed

in medical image analysis [6]. Additionally, the color distri-
bution of natural images is also very different from the medi-
cal ones [7], which can result in models that have difficulties
in generalizing to the other data [6].

Self-supervised learning (SSL) has emerged as a strategy
to avoid the annotation process. This technique takes advan-
tage of unlabeled data to perform a pre-training of the DNN
[8] [9], allowing the model to learn relevant image features
that can later be applied to a specific task. Recently, SSL has
been used in the skin image context. Both Li et al. [9] and
Tajbakhsh et al. [6] applied SSL techniques with color-based
pretext tasks to the segmentation of skin lesions. Kwasigroch
et al. [4] applied two SSL techniques based on geometric
distortion to the skin cancer classification task. The closest
work to ours is that of Chaves et al. [10], in which they asses
five SSL contrastive techniques against a competitive super-
vised baseline and conclude that SSL is competitive both in
reducing variability and improving model accuracy. Despite
the promising results, it is still unclear which is the best SSL
strategy for skin images. Additionally, all works focus solely
on a quantitative analysis, disregarding the impact of SSL on
the features learned by the model.

This work aims to shed a new light on the application of
SSL in the skin cancer context. Towards this goal we have
develop a robust experimental framework to:
(i) investigate the impact of SSL on the training and general-

ization of a DNN for skin lesion diagnosis into 8 different
classes, and demonstrate that even with a small dataset
there are benefits in using SSL.

(ii) compare two different SSL approaches, one based on ge-
ometric distortion and another on contrastive learning.

(iii) for the first time provide a qualitative assessment of the
impact of the different pre-training strategies, using ex-
plainability approaches.

(iv) demonstrate the complementarity of the features learned
by the SSL strategies and the benefits of combining them.

To the best of our knowledge, this is the first work to perform
a robust quantitative and qualitative validation of the impact
of SSL, and to demonstrate the importance of combining dif-
ferent SSL techniques.

The remaining of the paper is organized as follows. Sec-
tion 2 introduces the used methodologies, and Section 3 de-
scribes the experimental setup. Section 4 presents the results
and Section 5 concludes the paper.



2. METHODOLOGIES

This section gives a brief overview of SSL and the two strate-
gies adopted in this work, as well as the experimental setup
adopted in the skin cancer problem.

2.1. Self-Supervised Learning (SSL)

SSL is a technique used to extract visual features from unla-
beled data [4]. The main goal is to use the learned weights to
initialize a DNN for a specific target task, which is, in the skin
cancer image analysis, the classification of the different skin
lesions. To achieve this goal, the model is trained to execute a
pretext task, for which labels can be easily generated without
human supervision.

Pretext tasks aims to extract different feature representa-
tions from the images. Therefore, it is important to select a
SSL technique that is adequate to the wanted target supervised
task. In this paper we will use two SSL techniques, which we
believe to have a good performance on the skin image classi-
fication problem: Rotation [11] and the SimCLR [12].

2.1.1. Rotation technique

Rotation [11] is a classification-based technique, where the
network is trained to predict which rotation (0º, 90º, 180º or
270º) has been applied to the image. Therefore, by predicting
which rotation was applied to the input, the model is capable
of extracting useful information from each image.

The training pipeline starts with a small set of geometric
transformations, which will be applied to the dataset. Sec-
ondly, the transformed images are fed to the model and the
DNN is trained to identify which rotation was applied to the
original image. As mentioned before, the set of geometric
transformations defines the classification task, meaning that if
there are four rotations then it is a 4-class classification prob-
lem.

2.1.2. SimCLR technique

SimCLR [12] is a SSL approach that applies the concept
of contrastive learning to infer feature representations from
the unlabeled dataset. Feature representations are learned by
maximizing the agreement between differently augmented
views of the same image via a contrastive loss, which will
also accentuate the dissimilarity among different images.
The key idea is when comparing the multiple images using
the contrastive objective, the representations of correspond-
ing views are ’attracted’ to one another and the others are
’repelled’.

SimCLR can be divided into four main steps: 1) Random
transformations are applied to the input, in order to obtain a
pair of two augmented images. 2) Each augmented image
within the pair is sent to an encoder. 3) The output represen-
tations of the encoder are then sent to a multi-layer perceptron

(a) Supervised Learning. (b) Self-supervised Learning.

Fig. 1. Proposed framework using different initialization
techniques applied to the skin cancer diagnoses. In both mod-
els the last layer is fully-connected one with 8 units. The
triangle represents the last layers of the DNN specific of the
pretext-task.

(MLP). 4) The contrastive loss is applied in the feature space
given by the MLP.

2.2. Experimental Framework

This paper aims to perform a robust assessment of the impact
of SSL as a pre-training technique, to initialize the weights
of a DNN for skin cancer diagnosis. To better understand the
impact of SSL, we perform a systematic assessment, adopting
the following pipeline:
(i) Baselines - two standard supervised learning strategies,

where the weights of the DNN are initialized either at ran-
dom (trained from scratch) or using a pre-trained model
on ImageNet (fine-tuning).

(ii) Scratch + SSL - standard SSL methodology, where the
weights of the DNN are initialized at random and refined
using either the Rotation or the SimCLR technique.

(iii) ImageNet + SSL - a variant of the SSL approach, that
aims to leverage the information from a model pre-trained
on the ImageNet dataset. Here, we initialize the weights of
the model used in the SSL phase from ImageNet and refine
them using either the Rotation or SimCLR approach.

(iv) Fusion - fusion of the DNNs pre-trained using the Ro-
tation and SimCLR techniques both at the feature (early
fusion) and classification (late fusion) level.

Fig. 1 (a) describes the proposed generic approach for the
application of supervised learning (baselines) and Fig. 1 (b)
describes the proposed approach for the application of self-
supervised learning. For the latter, the first step consists of
pre-training the DNN using the chosen pretext task and, sec-
ondly, fine-tuning the parameters of model to the classifica-
tion task (this time using labels), by recycling the encoder
and adding a fully connected layer to output the 8 classes pre-
sented in our skin cancer dataset. In all our experiments, the
encoder is a ResNet-50 [13].

3. EXPERIMENTAL SETUP

3.1. Dataset and Evaluation Metrics

All experiments were performed using the ISIC 2019 [14]
[15] [16]. This dataset comprises 25,331 dermoscopy images,



divided into 8 lesions classes: Actinic keratosis (AKIEC),
Basal cell carcinoma (BCC), Benign keratosis (BKL), Der-
matofibroma (DF), Melanoma (MEL), Nevus (NV), Squa-
mous cell carcinoma (SCC) and Vascular (VASC). These
labels are only used to train the classification models (recall
Fig. 1). The images were collected at different medical cen-
ters (each center generated images with different sizes, color
and aspect ratio). Therefore, it was necessary to pre-process
them. This process compensated the color and allowed all the
images to have the same size, while maintaining their aspect
ratio. After having resized all the images to the desired size
(224x224), we applied the color constancy algorithm Shades
of Gray as it is proposed in [17].

In order to compare the different initialization approaches
and assess their robustness, we adopted a 5-time Monte Carlo
sampling strategy, where the ISIC 2019 dataset was parti-
tioned five times into training (70%) and validation (30%)
sets. Based on this, we report the median and standard devi-
ation of the following metrics: Balanced Accuracy (BACC),
Precision, F1-Score, and Specificity.

3.2. Network Training and Computational Environment

The experimental framework was implemented using Tensor-
flow/Keras and one NVIDIA Tesla K80 GPU 1. All mod-
els were trained for 60 epochs, using early stopping and the
Adam optimizer [18]. The batch size was set to 32. For
SSL, the losses are the categorial cross-entropy for the ro-
tation task and for the SimCLR it was used the NT-Xent loss
(with τ = 0.1). For this task, we transformed the input image
using horizontal flips, central crops and rotations of 0, 90, 180
or 270 degrees. We also studied the impacts of random color
distribution and random Gaussian blur, however these exper-
iments resulted in a lower performance of the model. Both
tasks had a initial learning rate of η = 10−4, however the ro-
tation had a reduction factor of 0.75 and the SimCLR a expo-
nential decay of 0.96. To train the classifier, we adopted the
weighted categorical cross-entropy loss, where the weights
are set to the relative frequency of each class, in order to ac-
count for the unbalance. Here the learning rate was set to
η = 10−5, with a reduction factor of 0.75. In order to prevent
over-fitting, we also used online data-augmentation (random
flips and rotations of multiples of 90 degrees).

4. RESULTS

The results section is divided into three parts: i) a quanti-
tative analysis, where we compare the different approaches
taking into consideration the selected evaluation metrics; ii)
a qualitative analysis that used the Grad-CAM technique [19]
to convey a more interpretable analysis of the impact of the
various initialization strategies in the features learned by the

1The source code will be released upon acceptance of the paper

model; and iii) a quantitative analysis of the fusion of SSL
strategies.

4.1. Quantitative Analysis

Table 1 summarizes the median and standard deviation of the
scores obtained for the different initialization techniques. By
looking at Table 1 it is possible to see that there are some
benefits in using SSL when compared to the baseline super-
vised training. By looking at the baseline trained from scratch
(row 1) and to both rows trained from scratch with self su-
pervised learning techniques (row 3 and 4) it is visible that
both SSL techniques presented higher median and lower stan-
dard deviations. This proves that when comparing models
trained from scratch there is a tendency to have higher accu-
racy and more stability ( the standard deviation has a lower
value) in the models that use SSL. By looking at the models
trained using the ImageNet weights - the baseline (row 2) and
to both models that used the SSL techniques (row 5 and 6)-
it is visible that the latter two have a higher stability (lower
standard deviation) even though both had smaller or similar
accuracy to the baseline. This proves that when comparing
models trained with the ImageNet weights there is a tendency
to have more stability in the models that use SSL. Finally,
looking at the SSL pre-trained models (row 2, 3, 5 and 6) it
is possible to see that the rotation technique has a higher
accuracy when compared to the model initialized with the
SimCLR technique.

A shared conclusion between our work, [4], and [10] is
that, when using SSL pre-trained models, there is an out-
performance in general terms, especially in variability.

4.2. Qualitative Analysis

We opted to execute a qualitative analysis, since we wanted
to understand what each model saw differently and what it
learned in order to make the diagnostic decisions. There-
fore, to analyze the differences between the learned represen-
tations for each initialization technique the Grad-CAM [19]
was used. This is a technique used for visualizing the features
learned by the DNN and the regions of an image that activate
a certain label. Figure 2 shows the Grad-CAM results for the
different initialization techniques (fine-tuned with ImageNet
weights).

Figure 2 proves that for the same input image all three
models look at different parts of each lesion. Therefore, apart
from having different performances each model seems to
learn different information about each class of lesion. The
SimCLR pre-trained model tended to focus more in the parts
of the lesion that presented higher contrast, while the Rotation
looked more at the structure of each lesion. The ImageNet
pre-trained model, was the least intuitive to interpret, since
its focus varied between lesion and skin. After, analyzing a
set of different images it was possible to confirm that each



Table 1. Application of the Monte Carlo Sampling with different initialization techniques: training the model from scratch or
fine-tuning with ImageNet weights; application of two self-supervised learning (SSL) techniques -Rotation and SimCLR - and
fusion of both techniques.

Initialization Technique BACC (%) Precision (%) F1-Score (%) SP(%)
Scratch 46,82 ± 2,00 35,37 ± 3,84 37,24 ± 4,64 92,89 ± 0,55

Baseline ImageNet 71,48 ± 1,82 65,14 ± 2,78 67,93 ± 1,75 96,04 ± 0,12
Rotation 54,92 ± 1,15 40,54 ± 1,84 43,19 ± 2,04 93,39 ± 0,18

Scratch + SSL SimCLR 52,54 ± 0,86 44,62 ± 1,39 47,53 ± 0,96 93,94 ± 0,18
Rotation 71,47 ± 0,30 62,37 ± 0,74 65,70 ± 0,47 95,77 ± 0,05

ImageNet + SSL SimCLR 65,37 ± 0,55 54,47 ± 2,71 58,28 ± 1,95 95,17 ± 0,18
Early Fusion 73,78 ± 0,24 68,41 ± 2,07 70,99 ± 2,61 96,40 ± 0,36

Fusion Late Fusion (mean) 57,09 ± 2,19 50,28 ± 1,41 52,02 ± 1,08 94,24 ± 0,19

Fig. 2. Example of different lesion visualizations using the
Grad-CAM algorithm (Baseline, Rotation and SimCLR).

method also had some limitations. The rotation had diffi-
culties in detecting centered and symmetrical lesions, since
each rotation of 90 degrees is similar, then the model does
not learn useful information about this lesion. This limitation
is visible in the fifth row and second column of fig. 2. The
SimCLR showed to be more precise in detecting the lesion.
However as some images contained margins with high con-
trast (black borders), this method tended to focus more on the
margins than the lesion (exemplified in the fourth row and

third column of fig. 2). Based on the qualitative results, the
question that arose next was: Is the information learned by
both SSL techniques complementary?

4.3. Fusion of SSL Approaches

As a consequence of the previous interrogation, we performed
two tests that fused the models pre-trained with SSL. First,
we used early fusion, which fuses the different methods in
the feature space. Secondly, we used late fusion that fuses
the models in the classification scores level (we applied the
mean strategy). The fusion results appear in the last two rows
of table 1. It is possible to conclude that the early fusion
(row 7) had better results than any other model both in
stability and accuracy, proving that in fact the features of
both models have complementary information. However, the
late fusion (row 8) proved to have worse results, meaning that
the features are complementary, but not learned classification
models.

5. CONCLUSIONS

This paper performed a robust assessment of the impact of
SSL as a pre-training technique for skin cancer diagnosis. In
particular, we performed a quantitative and qualitative anal-
ysis of the different pipelines. During this assessment we
compared two SSL techniques: Rotation and SimCLR. Our
experimental results show that there are benefits while using
SSL. We observed that when applying this technique, the clas-
sification DNN appeared to have less variability in its perfor-
mance. To the best of our knowledge this is the first work that
provides a qualitative analysis of the features learned by the
SSL strategies. This study led us to conclude that each model
learned different information from the data. Therefore, we
also studied the combination of the two SSL techniques which
resulted in the highest performance. SSL is known to benefit
from using more unlabeled data. Therefore, we plan to repeat
both experiments using more unlabeled data in future work
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